Frontiers of Physics

, 10:102501 | Cite as

Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions

Open Access
Review Article
Part of the following topical collections:
  1. Spin Physics


It is well known that noncentral nuclear forces, such as the spin–orbital coupling and the tensor force, play important roles in understanding many interesting features of nuclear structures. However, their dynamical effects in nuclear reactions are poorly known because only the spin-averaged observables are normally studied both experimentally and theoretically. Realizing that spin-sensitive observables in nuclear reactions may convey useful information about the in-medium properties of noncentral nuclear interactions, besides earlier studies using the time-dependent Hartree–Fock approach to understand the effects of spin–orbital coupling on the threshold energy and spin polarization in fusion reactions, some efforts have been made recently to explore the dynamical effects of noncentral nuclear forces in intermediate-energy heavy-ion collisions using transport models. The focus of these studies has been on investigating signatures of the density and isospin dependence of the form factor in the spin-dependent single-nucleon potential. Interestingly, some useful probes were identified in the model studies but so far there are still no data to compare with. In this brief review, we summarize the main physics motivations as well as the recent progress in understanding the spin dynamics and identifying spin-sensitive observables in heavy-ion reactions at intermediate energies. We hope the interesting, important, and new physics potentials identified in the spin dynamics of heavy-ion collisions will stimulate more experimental work in this direction.


heavy-ion collisions transport model spin–orbit interaction tensor force polarization 


  1. 1.
    P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298(5598), 1592 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    V. Baran, M. Colonna, V. Greco, and M. Di Toro, Reaction dynamics with exotic nuclei, Phys. Rep. 410(5–6), 335 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep. 464(4–6), 113 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    H. Liang, J. Meng, and S. G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei, Phys. Rep. 570, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. E. Hirsch, Spin Hall effect, Phys. Rev. Lett. 83(9), 1834 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    M. I. Dyakonov and V. I. Perel, Possibility of orientating electron spins with current, Sov. Phys. JETP Lett. 13, 467 (1971)ADSGoogle Scholar
  7. 7.
    M. I. Dyakonov and V. I. Perel, Current-induced spin orientation of electrons in semiconductors, Phys. Lett. A 35(6), 459 (1971)ADSCrossRefGoogle Scholar
  8. 8.
    Lecture Notes of R. Machleidt, CNS Summer School, University of Tokyo, Aug. 18–23, 2005Google Scholar
  9. 9.
    M. G. Mayer, On closed shells in nuclei, Phys. Rev. 74(3), 235 (1948)ADSCrossRefGoogle Scholar
  10. 9a.
    M. G. Mayer, On closed shells in nuclei (II), Phys. Rev. 75(12), 1969 (1949)ADSCrossRefGoogle Scholar
  11. 10.
    O. Haxel, J. H. D. Jensen, and H. E. Suess, On the “magic numbers” in nuclear structure, Phys. Rev. 75(11), 1766 (1949)ADSCrossRefGoogle Scholar
  12. 11.
    D. Vautherin and D. M. Brink, Hartree–Fock calculations with Skyrme’s interaction (I): Spherical nuclei, Phys. Rev. C 5(3), 626 (1972)ADSCrossRefGoogle Scholar
  13. 12.
    P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys. 37, 193 (1996)ADSCrossRefGoogle Scholar
  14. 13.
    M. Bender, P. Heenen, and P.-G Reinhard, Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys. 75, 121 (2003)ADSCrossRefGoogle Scholar
  15. 14.
    P. G. Reinhard, The relativistic mean-field description of nuclei and nuclear dynamics, Rep. Prog. Phys. 52(4), 439 (1989)ADSCrossRefGoogle Scholar
  16. 15.
    A. Sulaksono, T. Bürvenich, J. A. Maruhn, P. G. Reinhard, and W. Greiner, The nonrelativistic limit of the relativistic point coupling model, Ann. Phys. 308(1), 354 (2003)ADSMATHCrossRefGoogle Scholar
  17. 16.
    J. M. Pearson and M. Farine, Relativistic mean-field theory and a density-dependent spin–orbit Skyrme force, Phys. Rev. C 50(1), 185 (1994)ADSCrossRefGoogle Scholar
  18. 17.
    B. G. Todd-Rutel, J. Piekarewicz, and P. D. Cottle, Spinorbit splitting in low-j neutron orbits and proton densities in the nuclear interior, Phys. Rev. C 69, 021301 (2004)ADSCrossRefGoogle Scholar
  19. 18.
    M. Grasso, L. Gaudefroy, E. Khan, T. Niksic, J. Piekarewicz, O. Sorlin, N. V. Giai, and D. Vretenar, Nuclear “bubble” structure in Si34, Phys. Rev. C 79(3), 034318 (2009)ADSCrossRefGoogle Scholar
  20. 19.
    O. Sorlin and M. G. Porquet, Evolution of the N = 28 shell closure: A test bench for nuclear forces, Phys. Scr. T152, 014003 (2013)ADSCrossRefGoogle Scholar
  21. 20.
    P. G. Reinhard and H. Flocard, Nuclear effective forces and isotope shifts, Nucl. Phys. A 584(3), 467 (1995)ADSCrossRefGoogle Scholar
  22. 21.
    M. M. Sharma, G. Lalazissis, J. König, and P. Ring, Isospin dependence of the spin–orbit force and effective nuclear potentials, Phys. Rev. Lett. 74(19), 3744 (1995)ADSCrossRefGoogle Scholar
  23. 22.
    M. Onsi, R. C. Nayak, J. M. Pearson, H. Freyer, and W. Stocker, Skyrme representation of a relativistic spin–orbit field, Phys. Rev. C 55(6), 3166 (1997)ADSCrossRefGoogle Scholar
  24. 23.
    J. M. Pearson, Skyrme Hartree–Fock method and the spin–orbit term of the relativistic mean field, Phys. Lett. B 513(3–4), 319 (2001)ADSCrossRefGoogle Scholar
  25. 24.
    G. A. Lalazissis, D. Vretenar, W. Pöschl, and P. Ring, Reduction of the spin–orbit potential in light drip-line nuclei, Phys. Lett. B 418(1–2), 7 (1998)ADSCrossRefGoogle Scholar
  26. 25.
    B. S. Pudliner, A. Smerzi, J. Carlson, V. R. Pandharipande, S. C. Pieper, and D. G. Ravenhall, Neutron drops and Skyrme energy-density functionals, Phys. Rev. Lett. 76(14), 2416 (1996)ADSCrossRefGoogle Scholar
  27. 26.
    J. P. Schiffer, S. J. Freeman, J. A. Caggiano, C. Deibel, A. Heinz, C. L. Jiang, R. Lewis, A. Parikh, P. D. Parker, K. E. Rehm, S. Sinha, and J. S. Thomas, Is the nuclear spin–orbit interaction changing with neutron excess? Phys. Rev. Lett. 92(16), 162501 (2004) [Erratum: Phys. Rev. Lett., 110, 169901 (2013)]ADSCrossRefGoogle Scholar
  28. 27.
    T. Lesinski, M. Bender, K. Bennaceur, T. Duguet, and J. Meyer, Tensor part of the Skyrme energy density functional: Spherical nuclei, Phys. Rev. C 76(1), 014312 (2007)ADSCrossRefGoogle Scholar
  29. 28.
    M. Zalewski, J. Dobaczewski, W. Satula, and T. R. Werner, Spin–orbit and tensor mean-field effects on spin–orbit splitting including self-consistent core polarizations, Phys. Rev. C 77(2), 024316 (2008)ADSCrossRefGoogle Scholar
  30. 29.
    M. Bender, K. Bennaceur, T. Duguet, P. H. Heenen, T. Lesinski, and J. Meyer, Tensor part of the Skyrme energy density functional (II): Deformation properties of magic and semi-magic nuclei, Phys. Rev. C 80(6), 064302 (2009)ADSCrossRefGoogle Scholar
  31. 30.
    Y. M. Engel, D. M. Brink, K. Goeke, S. J. Krieger, and D. Vautherin, Time-dependent Hartree–Fock theory with Skyrme’s interaction, Nucl. Phys. A 249(2), 215 (1975)ADSCrossRefGoogle Scholar
  32. 31.
    T. H. R. Skyrme, The effective nuclear potential, Nucl. Phys. 9(4), 615 (1958)CrossRefMATHGoogle Scholar
  33. 32.
    T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, and Y. Akaishi, Evolution of nuclear shells due to the tensor force, Phys. Rev. Lett. 95(23), 232502 (2005)ADSCrossRefGoogle Scholar
  34. 33.
    T. Otsuka, T. Matsuo, and D. Abe, Mean field with tensor force and shell structure of exotic nuclei, Phys. Rev. Lett. 97(16), 162501 (2006)ADSCrossRefGoogle Scholar
  35. 34.
    T. Otsuka, T. Suzuki, M. Honma, Y. Utsuno, N. Tsunoda, K. Tsukiyama, and M. Hjorth-Jensen, Novel features of nuclear forces and shell evolution in exotic nuclei, Phys. Rev. Lett. 104(1), 012501 (2010)ADSCrossRefGoogle Scholar
  36. 35.
    L. Gaudefroy, O. Sorlin, D. Beaumel, Y. Blumenfeld, Z. Dombrádi, S. Fortier, S. Franchoo, M. Gélin, J. Gibelin, S. Grévy, F. Hammache, F. Ibrahim, K. W. Kemper, K. L. Kratz, S. M. Lukyanov, C. Monrozeau, L. Nalpas, F. Nowacki, A. N. Ostrowski, T. Otsuka, Y. E. Penionzhkevich, J. Piekarewicz, E. C. Pollacco, P. Roussel-Chomaz, E. Rich, J. A. Scarpaci, M. G. St. Laurent, D. Sohler, M. Stanoiu, T. Suzuki, E. Tryggestad, and D. Verney, Reduction of the spin–orbit splittings at the N=28 shell closure, Phys. Rev. Lett. 97(9), 092501 (2006)ADSCrossRefGoogle Scholar
  37. 36.
    G. Colo, H. Sagawa, S. Fracasso, and P. F. Bortignon, Spin–orbit splitting and the tensor component of the Skyrme interaction, Phys. Lett. B 646(5–6), 227 (2007) [Erratum: Phys. Lett. B, 668, 457 (2008)].ADSCrossRefGoogle Scholar
  38. 37.
    L. G. Cao, G. Colò, H. Sagawa, P. F. Bortignon, and L. Sciacchitano, Effects of the tensor force on the multipole response in finite nuclei, Phys. Rev. C 80(6), 064304 (2009)ADSCrossRefGoogle Scholar
  39. 38.
    C. L. Bai, H. Q. Zhang, H. Sagawa, X. Z. Zhang, G. Coló, and F. R. Xu, Effect of the tensor force on the charge exchange spin-dipole excitations of Pb208, Phys. Rev. Lett. 105(7), 072501 (2010)ADSCrossRefGoogle Scholar
  40. 39.
    C. L. Bai, H. Q. Zhang, H. Sagawa, X. Z. Zhang, G. Coló, and F. R. Xu, Spin-isospin excitations as quantitative constraints for the tensor force, Phys. Rev. C 83(5), 054316 (2011)ADSCrossRefGoogle Scholar
  41. 40.
    E. B. Suckling and P. D. Stevenson, The effect of the tensor force on the predicted stability of superheavy nuclei, Eur. Phys. Lett. 90(1), 12001 (2010)ADSCrossRefGoogle Scholar
  42. 41.
    H. A. Bethe, Theory of nuclear matter, Annu. Rev. Nucl. Part. Sci. 21(1), 93 (1971)ADSCrossRefGoogle Scholar
  43. 42.
    V. R. Pandharipande, Variational calculation of nuclear matter, Nucl. Phys. A 181(1), 33 (1972)ADSCrossRefGoogle Scholar
  44. 43.
    S. Fantoni and V. R. Pandharipande, Momentum distribution of nucleons in nuclear matter, Nucl. Phys. A 427(3), 473 (1984)ADSCrossRefGoogle Scholar
  45. 44.
    S. C. Pieper, R. B. Wiringa, and V. R. Pandharipande, Variational calculation of the ground state of O16, Phys. Rev. C 46(5), 1741 (1992)ADSCrossRefGoogle Scholar
  46. 45.
    C. Ciofi degli Atti and S. Simula, Realistic model of the nucleon spectral function in few- and many-nucleon systems, Phys. Rev. C 53(4), 1689 (1996)ADSCrossRefGoogle Scholar
  47. 46.
    A. Tang, J. W. Watson, J. Aclander, J. Alster, G. Asryan, Y. Averichev, D. Barton, V. Baturin, N. Bukhtoyarova, A. Carroll, S. Gushue, S. Heppelmann, A. Leksanov, Y. Makdisi, A. Malki, E. Minina, I. Navon, H. Nicholson, A. Ogawa, Y. Panebratsev, E. Piasetzky, A. Schetkovsky, S. Shimanskiy, and D. Zhalov, np short-range correlations from (p, 2p+n) measurements, Phys. Rev. Lett. 90(4), 042301 (2003)ADSCrossRefGoogle Scholar
  48. 47.
    K. S. Egiyan, et al. (CLAS Collaboration), Measurement of two-and three-nucleon short-range correlation probabilities in nuclei, Phys. Rev. Lett. 96(8), 082501 (2006)ADSCrossRefGoogle Scholar
  49. 48.
    E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman, and J. W. Watson, Evidence for strong dominance of protonneutron correlations in nuclei, Phys. Rev. Lett. 97(16), 162504 (2006)ADSCrossRefGoogle Scholar
  50. 49.
    R. Subedi, R. Shneor, P. Monaghan, B. D. Anderson, K. Aniol, J. Annand, J. Arrington, H. Benaoum, F. Benmokhtar, W. Boeglin, et al., Probing cold dense nuclear matter, Science 320(5882), 1476 (2008)ADSCrossRefGoogle Scholar
  51. 50.
    O. Hen, et al. (Jefferson Lab CLAS Collaboration), Momentum sharing in imbalanced Fermi systems, Science 346(6209), 614 (2014)ADSCrossRefGoogle Scholar
  52. 51.
    R. Schiavilla, R. B. Wiringa, S. C. Pieper, and J. Carlson, Tensor forces and the ground-state structure of nuclei, Phys. Rev. Lett. 98(13), 132501 (2007)ADSCrossRefGoogle Scholar
  53. 52.
    M. Alvioli, C. Ciofi degli Atti, and H. Morita, Protonneutron and proton-proton correlations in medium-weight nuclei and the role of the tensor force, Phys. Rev. Lett. 100(16), 162503 (2008)ADSCrossRefGoogle Scholar
  54. 53.
    J. Arrington, D. W. Higinbotham, G. Rosner, and M. Sargsian, Hard probes of short-range nucleon–nucleon correlations, Prog. Part. Nucl. Phys. 67(4), 898 (2012)ADSCrossRefGoogle Scholar
  55. 54.
    I. Vida˜na, A. Polls, and C. Providencia, Nuclear symmetry energy and the role of the tensor force, Phys. Rev. C 84, 062801(R) (2011)ADSCrossRefGoogle Scholar
  56. 55.
    A. Carbone, A. Polls, and A. Rios, High-momentum components in the nuclear symmetry energy, Eur. Phys. Lett. 97(2), 22001 (2012)ADSCrossRefGoogle Scholar
  57. 56.
    C. Xu, A. Li, and B. A. Li, Delineating effects of tensor force on the density dependence of nuclear symmetry energy, J. Phys.: Conf. Ser. 420, 012090 (2013)ADSGoogle Scholar
  58. 57.
    K. Pomorski and J. Dudek, Nuclear liquid-drop model and surface-curvature effects, Phys. Rev. C 67(4), 044316 (2003)ADSCrossRefGoogle Scholar
  59. 58.
    O. Hen, B. A. Li, W. J. Guo, L. B. Weinstein, and E. Piasetzky, Symmetry energy of nucleonic matter with tensor correlations, Phys. Rev. C 91(2), 025803 (2015)ADSCrossRefGoogle Scholar
  60. 59.
    B. A. Li, W. J. Guo, and Z. Z. Shi, Effects of the kinetic symmetry energy reduced by short-range correlations in heavyion collisions at intermediate energies, Phys. Rev. C 91(4), 044601 (2015)ADSCrossRefGoogle Scholar
  61. 60.
    P. Hoodbhoy and J. W. Negele, Solution of Hartree-Fock equations in coordinate space for axially symmetric nuclei, Nucl. Phys. A. 288(1), 23 (1977)ADSCrossRefGoogle Scholar
  62. 61.
    K. T. R. Davies and S. E. Koonin, Skyrme-force timedependent Hartree–Fock calculations with axial symmetry, Phys. Rev. C 23(5), 2042 (1981) [Erratum: Phys. Rev. C, 24, 1820 (1981)]ADSCrossRefGoogle Scholar
  63. 62.
    A. S. Umar, M. R. Strayer, and P. G. Reinhard, Resolution of the fusion window anomaly in heavy-ion collisions, Phys. Rev. Lett. 56(26), 2793 (1986)ADSCrossRefGoogle Scholar
  64. 63.
    P. G. Reinhard, A. S. Umar, K. T. R. Davies, M. R. Strayer, and S. J. Lee, Dissipation and forces in time-dependent Hartree-Fock calculations, Phys. Rev. C 37(3), 1026 (1988)ADSCrossRefGoogle Scholar
  65. 64.
    A. S. Umar, M. R. Strayer, P. G. Reinhard, K. T. R. Davies, and S. J. Lee, Spin–orbit force in time-dependent Hartree-Fock calculations of heavy-ion collisions, Phys. Rev. C 40(2), 706 (1989)ADSCrossRefGoogle Scholar
  66. 65.
    J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and M. R. Strayer, Spin-excitation mechanisms in Skyrme-force timedependent Hartree-Fock calculations, Phys. Rev. C 74(2), 027601 (2006)ADSCrossRefGoogle Scholar
  67. 66.
    A. S. Umar and V. E. Oberacker, Three-dimensional unrestricted time-dependent Hartree–Fock fusion calculations using the full Skyrme interaction, Phys. Rev. C 73(5), 054607 (2006)ADSCrossRefGoogle Scholar
  68. 67.
    G. F. Dai, L. Guo, E. G. Zhao, and S. G. Zhou, Dissipation dynamics and spin–orbit force in time-dependent Hartree–Fock theory, Phys. Rev. C 90(4), 044609 (2014)ADSCrossRefGoogle Scholar
  69. 68.
    Y. Iwata and J. A. Maruhn, Enhanced spin-current tensor contribution in collision dynamics, Phys. Rev. C 84(1), 014616 (2011)ADSCrossRefGoogle Scholar
  70. 69.
    G. F. Dai, L. Guo, E. G. Zhao, and S. G. Zhou, Effect of tensor force on dissipation dynamics in time-dependent Hartree–Fock theory, Science China-Physics, Mechanics & Astronomy 57(9), 1618 (2014)CrossRefGoogle Scholar
  71. 70.
    P. D. Stevenson, E. B. Suckling, S. Fracasso, M. C. Barton, and A. S. Umar, The Skyrme tensor force in heavy ion collisions, arXiv: 1507.00645 [nucl-th]Google Scholar
  72. 71.
    C. Y. Wong, Dynamics of nuclear fluid (VIII): Timedependent Hartree–Fock approximation from a classical point of view, Phys. Rev. C 25(3), 1460 (1982)ADSCrossRefGoogle Scholar
  73. 72.
    G. F. Bertsch and S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions, Phys. Rep. 160(4), 189 (1988)ADSCrossRefGoogle Scholar
  74. 73.
    J. Xu and B. A. Li, Probing in-medium spin–orbit interaction with intermediate-energy heavy-ion collisions, Phys. Lett. B 724(4–5), 346 (2013)ADSCrossRefGoogle Scholar
  75. 74.
    Y. Xia, J. Xu, B. A. Li, and W. Q. Shen, Spin–orbit coupling and the up-down differential transverse flow in intermediateenergy heavy-ion collisions, Phys. Rev. C 89(6), 064606 (2014)ADSCrossRefGoogle Scholar
  76. 75.
    Y. Xia, J. Xu, B. A. Li, and W. Q. Shen, The spin-splitting of collective flows in intermediate-energy heavy-ion collisions, arXiv: 1411.3057 [nucl-th]Google Scholar
  77. 76.
    J. Xu, B. A. Li, Y. Xia, and W. Q. Shen, Spin Effects in Intermediate-energy Heavy-ion Collisions, Nucl. Phys. Rev. 31, 306 (2014)Google Scholar
  78. 77.
    J. Xu, Y. Xia, B. A. Li, and W. Q. Shen, Spin-orbit coupling in intermediate-energy heavy-ion collisions, Nucl. Technol. 37, 100513 (2014) (in Chinese)Google Scholar
  79. 78.
    G. G. Ohlsen, Polarization transfer and spin correlation experiments in nuclear physics, Rep. Prog. Phys. 35(2), 717 (1972)ADSCrossRefGoogle Scholar
  80. 79.
    W. G. Love and M. A. Franey, Effective nucleon–nucleon interaction for scattering at intermediate energies, Phys. Rev. C 24(3), 1073 (1981)ADSCrossRefGoogle Scholar
  81. 80a.
    W. G. Love and M. A. Franey, Erratum: Effective nucleon–nucleon interaction for scattering at intermediate energies, Phys. Rev. C 27(1), 438 (1983)ADSCrossRefGoogle Scholar
  82. 80.
    P. Danielewicz and G. Odyniec, Transverse momentum analysis of collective motion in relativistic nuclear collisions, Phys. Lett. B 157(2–3), 146 (1985)ADSCrossRefGoogle Scholar
  83. 81.
    V. Greco, C. M. Ko, and P. Lévai, Parton coalescence and the antiproton/pion anomaly at RHIC, Phys. Rev. Lett. 90(20), 202302 (2003)ADSCrossRefGoogle Scholar
  84. 82.
    V. Greco, C. M. Ko, and P. Lévai, Partonic coalescence in relativistic heavy ion collisions, Phys. Rev. C 68(3), 034904 (2003)ADSCrossRefGoogle Scholar
  85. 83.
    L. W. Chen, C. M. Ko, and B. A. Li, Light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei, Nucl. Phys. A 729(2–4), 809 (2003)ADSCrossRefGoogle Scholar
  86. 84.
    L. W. Chen, C. M. Ko, and B. A. Li, Light clusters production as a probe to nuclear symmetry energy, Phys. Rev. C 68(1), 017601 (2003)ADSCrossRefGoogle Scholar
  87. 85.
    Y. Xia, J. Xu, B. A. Li, and W. Q. Shen, in preparation.Google Scholar
  88. 86.
    L. W. Chen, C. M. Ko, B. A. Li, and J. Xu, Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei, Phys. Rev. C 82(2), 024321 (2010)ADSCrossRefGoogle Scholar
  89. 87.
    C. Hartnack, L. Zhuxia, L. Neise, G. Peilert, A. Rosenhauer, H. Sorge, J. Aichelin, H. Stöcker, and W. Greiner, Quantum molecular dynamics a microscopic model from UNILAC to CERN energies, Nucl. Phys. A. 495(1–2), 303 (1989)ADSCrossRefGoogle Scholar
  90. 88.
    J. Aichelin, “Quantum” molecular dynamics — a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions, Phys. Rep. 202(5–6), 233 (1991)ADSCrossRefGoogle Scholar
  91. 89.
    C. C. Guo, Y. J. Wang, Q. F. Li, and F. S. Zhang, Effect of the spin–orbit interaction on flows in heavy-ion collisions at intermediate energies, Phys. Rev. C 90(3), 034606 (2014)ADSCrossRefGoogle Scholar
  92. 90.
    K. Asahi, M. Ishihara, N. Inabe, T. Ichihara, T. Kubo, M. Adachi, H. Takanashi, M. Kouguchi, M. Fukuda, D. Mikolas, D. J. Morrissey, D. Beaumel, T. Shimoda, H. Miyatake, and N. Takahashi, New aspect of intermediate energy heavy ion reactions. Large spin polarization of fragments, Phys. Lett. B 251(4), 488 (1990)ADSCrossRefGoogle Scholar
  93. 91.
    H. Okuno, K. Asahi, H. Sato, H. Ueno, J. Kura, M. Adachi, T. Nakamura, T. Kubo, N. Inabe, A. Yoshida, T. Ichihara, Y. Kobayashi, Y. Ohkubo, M. Iwamoto, F. Ambe, T. Shimoda, H. Miyatake, N. Takahashi, J. Nakamura, D. Beaumel, D. J. Morrissey, W. D. Schmidt-Ott, and M. Ishihara, Systematic behavior of ejectile spin polarization in the projectile fragmentation reaction, Phys. Lett. B 335(1), 29 (1994)ADSCrossRefGoogle Scholar
  94. 92.
    W.-D. Schmidt-Ott, K. Asahi, Y. Fujita, H. Geissel, K.-D. Gross, T. Hild, H. Irnich, M. Ishihara, K. Krumbholz, V. Kunze, A. Magel, F. Meissner, K. Muto, F. Nickel, H. Okuno, M. Pfützner, C. Scheidenberger, K. Suzuki, M. Weber, C. Wennemann, Spin alignment of 43Sc produced in the fragmentation of 500 MeV/u 46Ti, Z. Phys. A 350(3), 215 (1994)ADSCrossRefGoogle Scholar
  95. 93.
    D. E. Groh, P. F. Mantica, A. E. Stuchbery, A. Stolz, T. J. Mertzimekis, W. F. Rogers, A. D. Davies, S. N. Liddick, and B. E. Tomlin, Spin polarization of K37 produced in a singleproton pickup reaction at intermediate energies, Phys. Rev. Lett. 90(20), 202502 (2003)ADSCrossRefGoogle Scholar
  96. 94.
    K. Asahi, M. Ishihara, T. Ichihara, M. Fukuda, T. Kubo, Y. Gono, A. C. Mueller, R. Anne, D. Bazin, D. Guillemaud-Mueller, R. Bimbot, W. D. Schmidt-Ott, and J. Kasagi, Observation of spin-aligned secondary fragment beams of B14, Phys. Rev. C 43(2), 456 (1991)ADSCrossRefGoogle Scholar
  97. 95.
    D. Borremans, J. M. Daugas, S. Teughels, D. L. Balabanski, N. Coulier, F. de Oliveira Santos, G. Georgiev, M. Hass, M. Lewitowicz, I. Matea, Y. E. Penionzhkevich, W. D. Schmidt- Ott, Y. E. Sobolev, M. Stanoiu, K. Vyvey, and G. Neyens, Spin polarization of 27Na and 31Al in intermediate energy projectile fragmentation of 36S, Phys. Rev. C 66(5), 054601 (2002)ADSCrossRefGoogle Scholar
  98. 96.
    K. Turzó, P. Himpe, D. L. Balabanski, G. Bélier, D. Borremans, J. M. Daugas, G. Georgiev, F. O. Santos, S. Mallion, I. Matea, G. Neyens, Y. E. Penionzhkevich, C. Stodel, N. Vermeulen, and D. Yordanov, Spin polarization of Al34 fragments produced by nucleon pickup at intermediate energies, Phys. Rev. C 73(4), 044313 (2006)ADSCrossRefGoogle Scholar
  99. 97.
    Y. Ichikawa, H. Ueno, Y. Ishii, T. Furukawa, A. Yoshimi, D. Kameda, H. Watanabe, N. Aoi, K. Asahi, D. L. Balabanski, R. Chevrier, J. M. Daugas, N. Fukuda, G. Georgiev, H. Hayashi, H. Iijima, N. Inabe, T. Inoue, M. Ishihara, T. Kubo, T. Nanao, T. Ohnishi, K. Suzuki, M. Tsuchiya, H. Takeda, and M. M. Rajabali, Production of spin-controlled rare isotope beams, Nat. Phys. 8(12), 918 (2012)CrossRefGoogle Scholar
  100. 98.
    N. H. Buttimore, E. Gotsman, and E. Leader, Spindependent phenomena induced by electromagnetic-hadronic interference at high energies, Phys. Rev. D 18(3), 694 (1978)ADSCrossRefGoogle Scholar
  101. 99.
    A. Zelenski, G. Atoian, A. Bogdanov, D. Raparia, M. Runtso, and E. Stephenson, Precision, absolute proton polarization measurements at 200 MeV beam energy, J. Phys.: Conf. Ser. 295, 012132 (2011)ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.Kavli Institute for Theoretical Physics ChinaChinese Academy of SciencesBeijingChina
  3. 3.Department of Physics and AstronomyTexas A&M University–CommerceCommerceUSA
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations