Skip to main content
Log in

A possible interplay between electron beams and magnetic fluxes in the Aharonov-Bohm effect

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Most studies on the magnetic Aharonov-Bohm (A-B) effect focus on the action exerted by the magnetic flux on the electron beam, but neglect the back-action exerted by the electron beam on the magnetic flux. This paper focuses on the latter, which is the electromotive force ΔU across the solenoid induced by the time-dependent magnetic field of the electron beam. Based on the back-action analysis, we observe that the magnetic A-B effect arises owing to the interaction energy between the magnetic field of the electron beam and the magnetic field of the solenoid. We also demonstrate that the interpretation attributing the magnetic A-B effect to the vector potential violates the uncertainty principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, 1958

    MATH  Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Nonrelativistic Theory), Beijing World Publishing Corporation, 1999

    Google Scholar 

  3. Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115(3), 485 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. R. G. Chambers, Shift of an electron interference pattern by enclosed magnetic flux, Phys. Rev. Lett. 5(1), 3 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, and H. Yamada, Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave, Phys. Rev. Lett. 56(8), 792 (1986)

    Article  ADS  Google Scholar 

  6. Y. Aharonov and D. Bohm, Further considerations on electromagnetic potentials in the quantum theory, Phys. Rev. 123(4), 1511 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Peskin and A. Tonomura, The Aharonov-Bohm effect, Berlin: Springer-Verlag, 1989

    Book  Google Scholar 

  8. E. L. Feinberg, On the “special role” of the electromagnetic potentials in quantum mechanics, Sov. Phys. Usp. 5(5), 753 (1963)

    Article  ADS  Google Scholar 

  9. H. Erlichson, Aharonov-Bohm effect — Quantum effects on charged particles in field-free regions, Am. J. Phys. 38(2), 162 (1970)

    Article  ADS  Google Scholar 

  10. R. F. Wang, An experimental scheme to verify the dynamics of the Aharonov-Bohm effect, Chin. Phys. B 18(8), 3226 (2009)

    Article  ADS  Google Scholar 

  11. R. F. Wang, Influence of induced charges in the electric Aharonov-Bohm effect, arXiv: 1409.6793, 2014

    Google Scholar 

  12. W. H. Furry and N. F. Ramsey, Significance of potentials in quantum theory, Phys. Rev. 118(3), 623 (1960)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. L. Vaidman, Role of potentials in the Aharonov-Bohm effect, Phys. Rev. A 86(4), 040101 (2012)

    Article  ADS  Google Scholar 

  14. V. B. Braginsky and F. Y. Khalili, Quantum Measurement, Cambridge University Press, 1992

    Book  MATH  Google Scholar 

  15. J. von Neumann, Mathematical Foundation of Quantum Mechanics, translated by R. T. Beyer, Princeton University Press, 1955

    Google Scholar 

  16. B. Liebowitz, Significance of the Aharonov-Bohm effect, Nuovo Cim. 38(2), 932 (1965)

    Article  Google Scholar 

  17. T. H. Boyer, Does the Aharonov-Bohm effect exist? Found. Phys. 30(6), 893 (2000)

    Article  MathSciNet  Google Scholar 

  18. A. Caprez, B. Barwick, and H. Batelaan, Macroscopic test of the Aharonov-Bohm effect, Phys. Rev. Lett. 99(21), 210401 (2007)

    Article  ADS  Google Scholar 

  19. M. Tinkham, Introduction to Superconductivity, New York: McGraw-Hill, Inc., 1996

    Google Scholar 

  20. Deaver and W. M. Fairbank, Experimental evidence for quantized flux in superconducting cylinders, Phys. Rev. Lett. 7(2), 43 (1961)

    Article  ADS  Google Scholar 

  21. N. Byers and C. N. Yang, Theoretical considerations concerning quantized magnetic flux in superconducting cylinders, Phys. Rev. Lett. 7(2), 46 (1961)

    Article  ADS  Google Scholar 

  22. A. Tonomura, Direct observation of thitherto unobservable quantum phenomena by using electrons, Proc. Natl. Acad. Sci. USA 102(42), 14952 (2005)

    Article  ADS  Google Scholar 

  23. A. Tonomura, Quantum phenomena visualized by electron waves, Int. J. Mod. Phys. B 21(32), 5291 (2007)

    Article  ADS  Google Scholar 

  24. A. Tonomura, Applications of electron holography, Rev. Mod. Phys. 59(3), 639 (1987)

    Article  ADS  Google Scholar 

  25. M. A. Biondi, A. T. Forrester, M. P. Garfunkel, and C. B. Satterthwaite, Experimental evidence for an energy gap in superconductors, Rev. Mod. Phys. 30, 1109 (1958)

    Article  ADS  Google Scholar 

  26. W. H. Louisell, Quantum Statistical Properties of Radiation, John Wiley & Sons, Inc., 1990

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Feng Wang  (王瑞峰).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RF. A possible interplay between electron beams and magnetic fluxes in the Aharonov-Bohm effect. Front. Phys. 10, 358–363 (2015). https://doi.org/10.1007/s11467-015-0470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-015-0470-4

Keywords

Navigation