Skip to main content
Log in

Experimental system of coupled map lattices

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We design an optical feedback loop system consisting of a liquid-crystal spatial light modulator (SLM), a lens, polarizers, a CCD camera, and a computer. The system images every SLM pixel onto one camera pixel. The light intensity on the camera pixel shows a nonlinear relationship with the phase shift applied by the SLM. Every pixel behaves as a nonlinear map, and we can control the interaction of pixels. Therefore, this feedback loop system can be regarded as a spatially extended system. This experimental coupled map has variable dimensions, which can be up to 512 by 512. The system can be used to study high-dimensional problems that computer simulations cannot handle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kaneko, Collapse of Tori and Genesis of Chaos in Dissipative Systems, Vol. 33, World Scientific, 1986

    Book  Google Scholar 

  2. K. Kaneko, Lyapunov analysis and information flow in coupled map lattices, Physica D 23(1), 436 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  3. K. Kaneko, Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermittency, Physica D 34(1), 1 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. K. Kaneko, Spatiotemporal chaos in one-and two-dimensional coupled map lattices, Physica D 37(1), 60 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Hu and Z. L. Qu, Controlling spatiotemporal chaos in coupled map lattice systems, Phys. Rev. Lett. 72(1), 68 (1994)

    Article  ADS  Google Scholar 

  6. P. M. Gade and C.-K. Hu, Synchronous chaos in coupled map lattices with small-world interactions, Phys. Rev. E 62(5), 6409 (2000)

    Article  ADS  Google Scholar 

  7. O. N. Björnstad, R. A. Ims, and X. Lambin, Spatial population dynamics: analyzing patterns and processes of population synchrony, Trends in Ecology & Evolution 14(11), 427 (1999)

    Article  Google Scholar 

  8. J. Garcia-Ojalvo and R. Roy, Spatiotemporal communication with synchronized optical chaos, Phys. Rev. Lett. 86(22), 5204 (2001)

    Article  ADS  Google Scholar 

  9. H. Kantz, A robust method to estimate the maximal Lyapunov exponent of a time series, Phys. Lett. A 185(1), 77 (1994)

    Article  ADS  Google Scholar 

  10. L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nature Communications 5, 4079 (2014)

    Article  ADS  Google Scholar 

  11. S. Liu and M. Zhan, Clustering versus non-clustering phase synchronizations, Chaos 24, 013104 (2014)

    Article  ADS  Google Scholar 

  12. M. Zhan, S. Liu, and Z. He, Matching rules for collective behaviors on complex networks: Optimal configurations for vibration frequencies of networked harmonic oscillators, PLoS ONE 8(12), e82161 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Wen Li.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YH., Huang, LQ., Sun, CM. et al. Experimental system of coupled map lattices. Front. Phys. 10, 339–342 (2015). https://doi.org/10.1007/s11467-015-0466-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-015-0466-0

Keywords

Navigation