Frontiers of Physics

, Volume 9, Issue 2, pp 226–233 | Cite as

Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation

Research Article

Abstract

A two-dimensional electromagnetic Particle-in-Cell (PIC) simulation model is proposed to study the propagation of intense ion beams with beam width wb small compared to the electron skin depth c/ωpe through background plasmas in the presence of external applied magnetic fields. The effective electron gyroradius wge is found to be an important parameter for ion beam transport in the presence of magnetic fields. In the beam regions, the background plasmas respond differently to the ion beam of width wb < wge and wb > wge for the given magnetic field and beam energy. For the case of beam width wb < wge with relative weak external magnetic fields, the rotation effects of plasma electrons are found to be significant and contributes to the significant enhancement of the self-electric and self-magnetic fields. While for the case of beam width wb > wge with relative strong external magnetic fields, the rotation effects of plasma electrons are strongly inhibited and a well neutralization of ion beam current can be found. Finally, the influences of different beam widths, beam energies and magnetic fields on the neutralization of ion beam current are summarized for the cases of wb < wge < c/ωpe, wge < wb < c/ωpe and wb < c/ωpe < wge.

Keywords

current neutralization ion beams magnetized plasmas Particle-in-Cell simulations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ng, T. Ao, F. Perror, M. W. C. Dharma-Wardana, and M. E. Foord, Idealized slab plasma approach for the study of warm dense matter, Laser Part. Beams, 2005, 23(04): 527ADSCrossRefGoogle Scholar
  2. 2.
    R. P. Drake, High-Energy-Density Physics, Berlin: Springer-Verlag, 2006Google Scholar
  3. 3.
    N. A. Tahir, D. H. H. Hoffmann, A. Kozyreva, A. Shutov, J. A. Maruhn, U. Neuner, A. Tauschwitz, P. Spiller, and R. Bock, Shock compression of condensed matter using intense beams of energetic heavy ions, Phys. Rev. E, 2000, 61(2): 1975ADSCrossRefGoogle Scholar
  4. 4.
    N. A. Tahir, D. H. H. Hoffmann, A. Kozyreva, A. Shutov, J. A. Maruhn, U. Neuner, A. Tauschwitz, P. Spiller, and R. Bock, Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot, Phys. Rev. E, 2000, 62(1): 1224ADSCrossRefGoogle Scholar
  5. 5.
    P. K. Roy, S. S. Yu, E. Henestroza, A. Anders, F. M. Bieniosek, J. Coleman, S. Eylon, W. G. Greenway, M. Leitner, B. G. Logan, W. L. Waldron, D. R. Welch, C. Thoma, A. B. Sefkow, E. P. Gilson, P. C. Efthimion, and R. C. Davidson, Drift compression of an intense neutralized ion beam, Phys. Rev. Lett., 2005, 95(23): 234801ADSCrossRefGoogle Scholar
  6. 6.
    S. S. Yu, R. P. Abbott, R. O. Bangerter, J. J. Barnard, R. J. Briggs, D. Callahan, C. M. Celata, R. Davidson, C. S. Debonnel, S. Eylon, A. Faltens, A. Friedman, D. P. Grote, P. Heitzenroeder, E. Henestroza, I. Kaganovich, J. W. Kwan, J. F. Latkowski, E. P. Lee, B. G. Logan, P. F. Peterson, D. Rose, P. K. Roy, G. L. Sabbi, P. A. Seidl, W. M. Sharp, and D. R. Welch, Heavy ion fusion (HIF) driver point designs, Nucl. Instrum. Methods Phys. Res. A, 2005, 544(1–2): 294ADSCrossRefGoogle Scholar
  7. 7.
    I. D. Kaganovich, G. Shvets, E. Startsev, and R. C. Davidson, Nonlinear charge and current neutralization of an ion beam pulse in a pre-formed plasma, Phys. Plasmas, 2001, 8(9): 4180ADSCrossRefGoogle Scholar
  8. 8.
    D.R. Welch, D. V. Rose, B. V. Oliver, and R. E. Clark, Simulation techniques for heavy ion fusion chamber transport, Nucl. Instrum. Methods Phys. Res. A, 2001, 464(1–3): 134ADSCrossRefGoogle Scholar
  9. 9.
    I. D. Kaganovich, E. Startsev, and R. C. Davidson, Nonlinear plasma waves excitation by intense ion beams in background plasma, Phys. Plasmas, 2004, 11(7): 3546ADSCrossRefGoogle Scholar
  10. 10.
    E. Henestroza, S. Eylon, P. Roy, S. Yu, A. Anders, F. Bieniosek, W. Greenway, B. Logan, R. MacGill, D. Shuman, D. Vanecek, W. Waldron, W. Sharp, T. Houck, R. Davidson, P. Efthimion, E. Gilson, A. B. Sefkow, D. R. Welch, D. Rose, and C. Olson, Design and characterization of a neutralizedtransport experiment for heavy-ion fusion, Phys. Rev. ST Accel. Beams, 2004, 7(8): 083501ADSCrossRefGoogle Scholar
  11. 11.
    P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M. Bieniosek, W. G. Greenway, B. G. Logan, W. L. Waldron, D. L. Vanecek, D. R. Welch, D. V. Rose, R. C. Davidson, P. C. Efthimion, E. P. Gilson, A. B. Sefkow, and W. M. Sharp, Results on intense beam focusing and neutralization from the neutralized beam experiment, Phys. Plasmas, 2004, 11(5): 2890ADSCrossRefGoogle Scholar
  12. 12.
    P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, E. P. Gilson, F. M. Bieniosek, W. G. Greenway, B. G. Logan, W. L. Waldron, D. B. Shuman, D. L. Vanecek, D. R. Welch, D. V. Rose, R. C. Davidson, P. C. Efthimion, I. D. Kaganovich, A. B. Sefkow, and W. M. Sharp, Drift compression and final focus options for heavy ion fusion, Nucl. Instrum. Methods Phys. Res. A, 2005, 544(1–2): 255ADSGoogle Scholar
  13. 13.
    J. S. T. Ng, P. Chen, H. Baldis, P. Bolton, D. Cline, W. Craddock, C. Crawford, F. J. Decker, C. Field, Y. Fukui, V. Kumar, R. Iverson, F. King, R. E. Kirby, K. Nakajima, R. Noble, A. Ogata, P. Raimondi, D. Walz, and A. W. Weidemann, Observation of plasma focusing of a 28.5 GeV positron beam, Phys. Rev. Lett., 2001, 87(24): 244801ADSCrossRefGoogle Scholar
  14. 14.
    H. Qin, R. C. Davidson, J. J. Barnard, and E. P. Lee, Drift compression and final focus options for heavy ion fusion, Nucl. Instrum. Methods Phys. Res. A, 2005, 544(1–2): 255ADSCrossRefGoogle Scholar
  15. 15.
    R. C. Davidson and H. Qin, Kinetic description of neutralized drift compression and transverse focusing of intense ion charge bunches, Phys. Rev. ST Accel. Beams, 2005, 8(6): 064201ADSCrossRefGoogle Scholar
  16. 16.
    A. B. Sefkow and R. C. Davidson, Theoretical models for describing longitudinal bunch compression in the neutralized drift compression experiment, Phys. Rev. ST Accel. Beams, 2006, 9(9): 090101ADSCrossRefGoogle Scholar
  17. 17.
    I. D. Kaganovich, E. A. Startsev, A. B. Sefkow, and R. C. Davidson, Charge and current neutralization of an ion-beam pulse propagating in a background plasma along a Solenoidal magnetic field, Phys. Rev. Lett., 2007, 99(23): 235002ADSCrossRefGoogle Scholar
  18. 18.
    M. A. Dorf, I. D. Kaganovich, E. A. Startsev, and R. C. Davidson, Enhanced self-focusing of an ion beam pulse propagating through a background plasma along a Solenoidal magnetic field, Phys. Rev. Lett., 2009, 103(7): 075003ADSCrossRefGoogle Scholar
  19. 19.
    T. Namiki, A new FDTD algorithm based on alternatingdirection implicit method, IEEE Trans. Microw. Theory Tech., 1999, 47(10): 2003ADSCrossRefGoogle Scholar
  20. 20.
    R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, New York: McGraw-Hill, 1981Google Scholar
  21. 21.
    J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 1994, 114(2): 185ADSCrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    J. Villasenor and O. Buneman, Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun., 1992, 69(2–3): 306ADSCrossRefGoogle Scholar
  23. 23.
    M. A. Dorf, I. D. Kaganovich, E. A. Startsev, and R. C. Davidson, Whistler wave excitation and effects of self-focusing on ion beam propagation through a background plasma along a solenoidal magnetic field, Phys. Plasmas, 2010, 17(2): 023103ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic TechnologyDalian University of TechnologyDalianChina

Personalised recommendations