Skip to main content
Log in

Semiconductor nanostructures enabled by aerosol technology

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Aerosol technology provides efficient methods for producing nanoparticles with well-controlled composition and size distribution. This review provides an overview of methods and results obtained by using aerosol technology for producing nanostructures for a variety of applications in semiconductor physics and device technology. Examples are given from: production of metal and metal alloy particles; semiconductor nanoparticles; semiconductor nanowires, grown both in the aerosol phase and on substrates; physics studies based on individual aerosol-generated devices; and large area devices based on aerosol particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. R. Mueller, L. Mädler, and S. E. Pratsinis, Nanoparticle synthesis at high production rates by flame spray pyrolysis, Chem. Eng. Sci., 2003, 58(10): 1969

    Google Scholar 

  2. H. G. Craighead, 10-nm resolution electron-beam lithography, J. Appl. Phys., 1984, 55(12): 4430

    ADS  Google Scholar 

  3. G. M. Whitesides, J. P. Mathias, and C. T. Seto, Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures, Science, 1991, 254(5036): 1312

    ADS  Google Scholar 

  4. A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media, J. Am. Chem. Soc., 1990, 112(4): 1327

    Google Scholar 

  5. W. Seifert, N. Carlsson, M. Miller, M. E. Pistol, L. Samuelson, and L. R. Wallenberg, In-situ growth of quantum dot structures by the Stranski-Krastanow growth mode, Prog. Cryst. Growth Charact. Mater., 1996, 33(4): 423

    Google Scholar 

  6. H. Schift, Nanoimprint lithography: An old story in modern times? A review, J. Vac. Sci. Technol. B, 2008, 26(2): 458

    Google Scholar 

  7. W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, 2012

    Google Scholar 

  8. J. H. Vincent, Aerosol Sampling: Science, Standards, Instrumentation and Applications, John Wiley & Sons, 2007

    Google Scholar 

  9. R. C. Flagan, History of electrical aerosol measurements, Aerosol Sci. Technol., 1998, 28(4): 301

    Google Scholar 

  10. P. Kulkarni, P. A. Baron, and K. Willeke (Eds.), Aerosol Measurement: Principles, Techniques, and Applications, John Wiley & Sons, 2011

  11. S. E. Pratsinis, Flame aerosol synthesis of ceramic powders, Pror. Energy Combust. Sci., 1998, 24(3): 197

    Google Scholar 

  12. M. Attoui, M. Paragano, J. Cuevas, and J. Fernandez de la Mora, Tandem DMA generation of strictly monomobile 1–3.5 nm particle standards, Aerosol Sci. Technol., 2013, 47(5): 499

    Google Scholar 

  13. D. R. Chen, D. Y. H. Pui, G. W. Mulholland, and M. Fernandez, Design and testing of an aerosol/sheath inlet for high resolution measurements with a DMA, J. Aerosol Sci., 1999, 30(8): 983

    Google Scholar 

  14. T. J. Krinke, H. Fissan, K. Deppert, M. H. Magnusson, and L. Samuelson, Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase, Appl. Phys. Lett., 2001, 78(23): 3708

    ADS  Google Scholar 

  15. H. Kim, J. Kim, H. Yang, J. Suh, T. Kim, B. Han, S. Kim, D. S. Kim, P. V. Pikhitsa, and M. Choi, Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols, Nat. Nanotechnol., 2006, 1(2): 117

    ADS  Google Scholar 

  16. L. Qi, P. H. McMurry, D. J. Norris, and S. L. Girshick, Micropattern deposition of colloidal semiconductor nanocrystals by aerodynamic focusing, Aerosol Sci. Technol., 2010, 44(1): 55

    Google Scholar 

  17. S. H. Kim, G. W. Mulholland, and M. R. Zachariah, Understanding ion-mobility and transport properties of aerosol nanowires, J. Aerosol Sci., 2007, 38(8): 823

    Google Scholar 

  18. K. Ehara, C. Hagwood, and K. J. Coakley, Novel method to classify aerosol particles according to their mass-to-charge ratio — Aerosol particle mass analyser, J. Aerosol Sci., 1996, 27(2): 217

    Google Scholar 

  19. H. G. Scheibel and J. Porstendörfer, Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm, J. Aerosol Sci., 1983, 14(2): 113

    Google Scholar 

  20. B. Y. H. Liu and D. Y. H. Pui, Electrical neutralization of aerosols, J. Aerosol Sci., 1974, 5(5): 465

    Google Scholar 

  21. E. O. Knutson and K. T. Whitby, Aerosol classification by electric mobility: Apparatus, theory, and applications, J. Aerosol Sci., 1975, 6(6): 443

    Google Scholar 

  22. M. N. A. Karlsson, K. Deppert, L. S. Karlsson, M. H. Magnusson, J. O. Malm, and N. S. Srinivasan, Compaction of agglomerates of aerosol nanoparticles: A compilation of experimental data, J. Nanopart. Res., 2005, 7(1): 43

    Google Scholar 

  23. M. H. Magnusson, K. Deppert, J. O. Malm, J. O. Bovin, and L. Samuelson, Gold nanoparticles: Production, reshaping, and thermal charging, J. Nanopart. Res., 1999, 1(2): 243

    Google Scholar 

  24. M. H. Magnusson, K. Deppert, and J. O. Malm, Singlecrystalline tungsten nanoparticles produced by thermal decomposition of tungsten hexacarbonyl, J. Mater. Res., 2000, 15(07): 1564

    ADS  Google Scholar 

  25. M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices, Appl. Phys. Lett., 2001, 79(3): 433

    ADS  Google Scholar 

  26. S. Schwyn, E. Garwin, and A. Schmidt-Ott, Aerosol generation by spark discharge, J. Aerosol Sci., 1988, 19(5): 639

    Google Scholar 

  27. B. O. Meuller, M. E. Messing, D. L. J. Engberg, A. M. Jansson, L. I. M. Johansson, S. M. Norlén, N. Tureson, and K. Deppert, Review of spark discharge generators for production of nanoparticle aerosols, Aerosol Sci. Technol., 2012, 46(11): 1256

    Google Scholar 

  28. N. S. Tabrizi, Q. Xu, N. M. van der Pers, and A. Schmidt- Ott, Generation of mixed metallic nanoparticles from immiscible metals by spark discharge, J. Nanopart. Res., 2010, 12(1): 247

    Google Scholar 

  29. M. E. Messing, R. Westerström, B. O. Meuller, S. Blomberg, J. Gustafson, J. N. Andersen, E. Lundgren, R. van Rijn, O. Balmes, H. Bluhm, and K. Deppert, Generation of Pd model catalyst nanoparticles by spark discharge, J. Phys. Chem. C, 2010, 114(20): 9257

    Google Scholar 

  30. M. E. Messing, C. R. Svensson, J. Pagels, B. O. Meuller, K. Deppert, and J. Rissler, Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies, Nanotoxicology, 2013, 7(6): 1052

    Google Scholar 

  31. T. V. Pfeiffer, P. Keijzer, and A. Schmidt-Ott, A controlled spark generator for increased nanoparticle production, Europ. Aerosol Conf., 16 Sep. 2013, Prague

    Google Scholar 

  32. E. Hontanón, J. M. Palomares, M. Stein, X. Guo, R. Engeln, H. Nirschl, and F. E. Kruis, Experimental study on the transition from spark to arc discharge with respect to nanoparticle production, Europ. Aerosol Conf., 16 Sep. 2013, Prague

    Google Scholar 

  33. R. P. Elliott and F. A. Shunk, The Au Ga (Gold Gallium) system, Bull Alloy Phase Diagr., 1981, 2(3): 356

    Google Scholar 

  34. H. Okamoto and T. B. Massalski, The Au Si (Gold Silicon) system, Bull Alloy Phase Diagr., 1983, 4(2): 190

    Google Scholar 

  35. M. N. A. Karlsson, K. Deppert, M. H. Magnusson, L. S. Karlsson, and J. O. Malm, Size- and composition-controlled Au-Ga aerosol nanoparticles, Aerosol Sci. Technol., 2004, 38(9): 948

    Google Scholar 

  36. M. H. Magnusson, Metal and Semiconductor Nanocrystals for Quantum Devices, Lund University, 2001

    Google Scholar 

  37. A. Maisels, F. E. Kruis, and H. Fissan, Mixing selectivity in bicomponent, bipolar aggregation, J. Aerosol Sci., 2002, 33(1): 35

    Google Scholar 

  38. K. Deppert and L. Samuelson, Self-limiting transformation of monodisperse Ga droplets into GaAs nanocrystals, Appl. Phys. Lett., 1995, 68(10): 1409

    ADS  Google Scholar 

  39. K. Deppert, M. H. Magnusson, L. Samuelson, J. O. Malm, C. Svensson, and J. O. Bovin, Size-selected nanocrystals of III-V semiconductor materials by the aerotaxy method, J. Aerosol Sci., 1998, 29(5–6): 737

    Google Scholar 

  40. K. Deppert, J. O. Bovin, M. H. Magnusson, J. O. Malm, C. Svensson, and L. Samuelson, Aerosol fabrication of nanocrystals of InP, Jpn. J. Appl. Phys., 1999, 38: 1056

    ADS  Google Scholar 

  41. N. Anttu and H. Q. Xu, Coupling of light into nanowire arrays and subsequent absorption, J. Nanosci. Technol., 2010, 10(11): 7183

    Google Scholar 

  42. X. Duan, J. Wang, and C. M. Lieber, Synthesis and optical properties of gallium arsenide nanowires, Appl. Phys. Lett., 2000, 76(9): 1116

    ADS  Google Scholar 

  43. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature, 2001, 409(6816): 66

    ADS  Google Scholar 

  44. A. A. Guzelian, J. E. B. Katari, A. V. Kadavanich, U. Banin, K. Hamad, E. Juban, A. P. Alivisatos, R. H. Wolters, C. C. Arnold, and J. R. Heath, Synthesis of size-selected, surfacepassivated InP nanocrystals, J. Phys. Chem., 1996, 100(17): 7212

    Google Scholar 

  45. M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, Continuous gasphase synthesis of nanowires with tunable properties, Nature, 2012, 492(7427): 90

    ADS  Google Scholar 

  46. S. H. Kim and M. R. Zachariah, Gas-phase growth of diameter-controlled carbon nanotubes, Mater. Lett., 2007, 61(10): 2079

    Google Scholar 

  47. U. Krishnamachari, M. Borgström, B. J. Ohlsson, N. Panev, L. Samuelson, W. Seifert, M. W. Larsson, and L. R. Wallenberg, Defect-free InP nanowires grown in [001] direction on InP (001), Appl. Phys. Lett., 2004, 85(11): 2077

    ADS  Google Scholar 

  48. To be published separately.

  49. L. Samuelson, M. Heurlin, M. Magnusson, and K. Deppert, PCT patent application, 2011, WO/2011/142717

    Google Scholar 

  50. A. Wiedensohler, H. C. Hansson, I. Maximov, and L. Samuelson, Nanometer patterning of InP using aerosol and plasma etching techniques, Appl. Phys. Lett., 1992, 61(7): 837

    ADS  Google Scholar 

  51. I. Maximov, A. Gustafsson, H. C. Hansson, L. Samuelson, W. Seifert, and A. Wiedensohler, Fabrication of quantum dot structures using aerosol deposition and plasma etching techniques, J. Vac. Sci. Technol., 1993, 11(4): 748

    ADS  Google Scholar 

  52. K. Deppert, I. Maximov, L. Samuelson, H. C. Hansson, and A. Wiedensohler, Sintered aerosol masks for dry-etched quantum dots, Appl. Phys. Lett., 1994, 64(24): 3293

    ADS  Google Scholar 

  53. I. Maximov, K. Deppert, L. Montelius, L. Samuelson, S. Gray, M. Johansson, H. C. Hansson, and A. Wiedensohler, Characterization of InP/GaInAs nanometer sized columns produced by aerosol deposition and plasma etching, Mat. Res. Soc. Symp. Proc., 1994, 332: 513

    Google Scholar 

  54. I. Maximov, E.-L. Sarwe, M. Beck, K. Deppert, M. Graczyk, M. H. Magnusson, and L. Montelius, Fabrication of Si-based nanoimprint stamps with sub-20 nm features, Microelectr. Eng., 2002, 61–62: 449

    Google Scholar 

  55. B. A. Wacaser, K. A. Dick, Z. Zanolli, A. Gustafsson, K. Deppert, and L. Samuelson, Size-selected compound semiconductor quantum dots by nanoparticle conversion, Nanotechnology, 2007, 18(10): 105306

    ADS  Google Scholar 

  56. K. Watanabe, N. Koguchi, and Y. Gotoh, Fabrication of GaAs quantum dots by modified droplet epitaxy, Jpn. J. Appl. Phys., 2000, 39: L79

    ADS  Google Scholar 

  57. R. S. Wagner and W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett., 1964, 4(5): 89

    ADS  Google Scholar 

  58. E. I. Givargizov, Fundamental aspects of VLS growth, J. Cryst. Growth, 1975, 31: 20

    ADS  Google Scholar 

  59. M. Yazawa, M. Koguchi, and K. Hiruma, Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates, Appl. Phys. Lett., 1991, 58(10): 1080

    ADS  Google Scholar 

  60. K. A. Dick, A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires, Prog. Cryst. Growth Charact. Mater., 2009, 54(3–4): 138

    Google Scholar 

  61. M. E. Messing, K. Hillerich, J. Bolinsson, K. Storm, J. Johansson, K. A. Dick, and K. Deppert, A comparative study of the effect of gold seed particle preparation method on nanowire growth, Nano Res., 2010, 3(7): 506

    Google Scholar 

  62. B. J. Ohlsson, M. T. Björk, M. H. Magnusson, K. Deppert, L. Samuelson, and L. R. Wallenberg, Size-, shape-, and position-controlled GaAs nano-whiskers, Appl. Phys. Lett., 2001, 79(20): 3335

    ADS  Google Scholar 

  63. M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, One-dimensional heterostructures in semiconductor nano-whiskers, Appl. Phys. Lett., 2002, 80(6): 1058

    ADS  Google Scholar 

  64. M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, One-dimensional steeplechase for electrons realized, Nano Lett., 2002, 2(2): 87

    ADS  Google Scholar 

  65. L. I. Samuelson and B. J. Ohlsson, United States patent, 2003, US 7,335,908

    Google Scholar 

  66. L. E. Fröberg, B. A. Wacaser, J. B. Wagner, S. Jeppesen, B. J. Ohlsson, K. Deppert, and L. Samuelson, Transients in the formation of nanowire heterostructures, Nano Lett., 2008, 8(11): 3815

    ADS  Google Scholar 

  67. B. J. Ohlsson, M. T. Björk, A. I. Persson, C. Thelander, L. R. Wallenberg, M. H. Magnusson, K. Deppert, and L. Samuelson, Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures, Physica E, 2002, 13(2–4): 1126

    ADS  Google Scholar 

  68. T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, Epitaxial III-V nanowires on silicon, Nano Lett., 2004, 4(10): 1987

    ADS  Google Scholar 

  69. L. I. Samuelson and T. M. I. Mårtensson, United States patent, 2009, US 7,528,002

    Google Scholar 

  70. L. I. Samuelson and T. M. I. Mårtensson, United States patent, 2011, US 7,960,260

    Google Scholar 

  71. L. Samuelson, J. Ohlsson, T. Mårtensson, and P. Svensson, United States patent, 2011, US 8,084,337

    Google Scholar 

  72. A. I. Persson, M. W. Larsson, S. Stenström, B. J. Ohlsson, L. Samuelson, and L. R. Wallenberg, Solid-phase diffusion mechanism for GaAs nanowire growth, Nat. Mater., 2004, 3(10): 677

    ADS  Google Scholar 

  73. J. Johansson, C. P. T. Svensson, T. Mårtensson, L. Samuelson, and W. Seifert, Mass transport model for semiconductor nanowire growth, J. Phys. Chem. B, 2005, 109(28): 13567

    Google Scholar 

  74. L. E. Fröberg, W. Seifert, and J. Johansson, Diameterdependent growth rate of InAs nanowires, Phys. Rev. B, 2007, 76(15): 153401

    ADS  Google Scholar 

  75. P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, Controlled polytypic and twin-plane superlattices in III-V nanowires, Nat. Nanotechnol., 2009, 4(1): 50

    ADS  Google Scholar 

  76. J. Johansson, K.A. Dick, P. Caroff, M.E. Messing, J. Bolinsson, K. Deppert, and L. Samuelson, Diameter dependence of the wurtzite-zinc blende transition in InAs nanowires, J. Phys. Chem. C, 2010, 114(9): 3837

    Google Scholar 

  77. K. A. Dick, J. Bolinsson, B. M. Borg, and J. Johansson, Controlling the abruptness of axial heterojunctions in III-V nanowires: Beyond the reservoir effect, Nano Lett., 2012, 12(6): 3200

    Google Scholar 

  78. M. Ek, B. M. Borg, J. Johansson, and K. A. Dick, Diameter limitation in growth of III-Sb-containing nanowire heterostructures, ACS Nano, 2013, 7(4): 3668

    Google Scholar 

  79. M. A. Verheijen, G. Immink, T. de Smet, M. T. Borgström, and E. P. A. M. Bakkers, Growth kinetics of heterostructured GaP-GaAs nanowires, J. Am. Chem. Soc., 2006, 128(4): 1353

    Google Scholar 

  80. H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, X. Zhang, Y. N. Guo, and J. Zou, Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process, Nano Lett., 2007, 7(4): 921

    ADS  Google Scholar 

  81. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature, 2002, 420(6911): 57

    ADS  Google Scholar 

  82. H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, M. A. Fickenscher, S. Perera, T. B. Hoang, L. M. Smith, H. E. Jackson, J. M. Yarrison-Rice, X. Zhang, and J. Zou, Unexpected benefits of rapid growth rate for III-V nanowires, Nano Lett., 2009, 9(2): 695

    ADS  Google Scholar 

  83. M. Suhara, C. Nagao, H. Honji, Y. Miyamoto, K. Furuya, and R. Takemura, Atomically flat OMVPE growth of GaInAs and InP observed by AFM for level narrowing in resonant tunneling diodes, J. Cryst. Growth, 1997, 179(1–2): 18

    ADS  Google Scholar 

  84. G. B. Stringfellow, Organometallic Vapor Phase Epitaxy, 2nd Ed., San Diego: Academic Press, 1999

    Google Scholar 

  85. M. T. Borgström, J. Wallentin, J. Trägårdh, P. Ramvall, M. Ek, L. R. Wallenberg, L. Samuelson, and K. Deppert, In Situ etching for total control over axial and radial nanowire growth, Nano Res., 2010, 3(4): 264

    Google Scholar 

  86. J. Wallentin, M. E. Messing, E. Trygg, L. Samuelson, K. Deppert, and M. T. Borgström, Growth of doped InAsyP1−y nanowires with InP shells, J. Cryst. Growth, 2011, 331(1): 8

    ADS  Google Scholar 

  87. D. Jacobsson, J. M. Persson, D. Kriegner, T. Etzelstorfer, J. Wallentin, J. B. Wagner, J. Stangl, L. Samuelson, K. Deppert, and M. T. Borgström, Particle-assisted GaxIn1−x P nanowire growth for designed bandgap structures, Nanotechnology, 2012, 23(24): 245601

    ADS  Google Scholar 

  88. J. Wallentin, J. M. Persson, J. B. Wagner, L. Samuelson, K. Deppert, and M. T. Borgström, High-performance single nanowire tunnel diodes, Nano Lett., 2010, 10(3): 974

    ADS  Google Scholar 

  89. M. T. Borgström, J. Wallentin, K. Kawaguchi, L. Samuelson, and K. Deppert, Dynamics of extremely anisotropic etching of InP nanowires by HCl, Chem. Phys. Lett., 2011, 502(4–6): 222

    ADS  Google Scholar 

  90. G. L. Tuin, M. T. Borgström, J. Trägårdh, M. Ek, L. R. Wallenberg, L. Samuelson, and M. E. Pistol, Valence band splitting in wurtzite InP nanowires observed by photoluminescence and photoluminescence excitation spectroscopy, Nano Res., 2011, 4(2): 159

    Google Scholar 

  91. J. Wallentin, P. Wickert, M. Ek, A. Gustafsson, L. R. Wallenberg, M. H. Magnusson, L. Samuelson, K. Deppert, and M. T. Borgström, Degenerate p-doping of InP nanowires for large area tunnel diodes, Appl. Phys. Lett., 2011, 99(25): 253015

    Google Scholar 

  92. J. Wallentin and M. T. Borgström, Doping of semiconductor nanowires, J. Mater. Res., 2011, 26(17): 2142

    ADS  Google Scholar 

  93. J. Eskola, J. A. Seetula, and R. S. Timonen, Kinetics of the CH3+HCl/DCl CH4/CH3D+Cl and CD3+HCl/DCl CD3H/CD4+Cl reactions: An experimental H atom tunneling investigation, Chem. Phys., 2006, 331(1): 26

    ADS  Google Scholar 

  94. M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, Nanowires with promise for photovoltaics, IEEE J. Sel. Top. Quantum Electron., 2011, 17(4): 1050

    Google Scholar 

  95. K. A. Dick, K. Deppert, L. S. Karlsson, M. W. Larsson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Directed growth of branched nanowire structures, MRS Bull., 2007, 32(02): 127

    Google Scholar 

  96. K. A. Dick, K. Deppert, M. W. Larsson, T. Mårtensson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Synthesis of branched “nanotrees” by controlled seeding of multiple branching events, Nat. Mater., 2004, 3(6): 380

    ADS  Google Scholar 

  97. L. I. Samuelson and K. W. Deppert, United States patent, 2010, US 7,662,706

    Google Scholar 

  98. L. I. Samuelson and K. W. Deppert, United States patent, 2010, US 7,875,536

    Google Scholar 

  99. K. Bayer, K. A. Dick, T. J. Krinke, and K. Deppert, Targeted deposition of Au aerosol nanoparticles on vertical nanowires for the creation of nanotrees, J. Nanopart. Res., 2007, 9(6): 1211

    Google Scholar 

  100. K. A. Dick, K. Deppert, M. W. Larsson, W. Seifert, L. Reine Wallenberg, and L. Samuelson, Height-controlled nanowire branches on nanotrees using a polymer mask, Nanotechnology, 2007, 18(3): 035601

    ADS  Google Scholar 

  101. K. A. Dick, K. Deppert, L. S. Karlsson, W. Seifert, L. R. Wallenberg, and L. Samuelson, Position-controlled interconnected InAs nanowire networks, Nano Lett., 2006, 6(12): 2842

    ADS  Google Scholar 

  102. K. A. Dick, Z. Geretovszky, A. Mikkelsen, L. S. Karlsson, E. Lundgren, J. O. Malm, J. N. Andersen, L. Samuelson, W. Seifert, B. A. Wacaser, and K. Deppert, Improving InAs nanotree growth with composition-controlled Au-In nanoparticles, Nanotechnology, 2006, 17(5): 1344

    ADS  Google Scholar 

  103. T. Junno, S. Anand, K. Deppert, L. Montelius, and L. Samuelson, Contact mode atomic force microscopy imaging of nanometer-sized particles, Appl. Phys. Lett., 1995, 66(24): 3295

    ADS  Google Scholar 

  104. T. Junno, K. Deppert, L. Montelius, and L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett., 1995, 66(26): 3627

    ADS  Google Scholar 

  105. T. Junno, S. B. Carlsson, H. Q. Xu, L. Montelius, and L. Samuelson, Fabrication of quantum devices by angstromlevel manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett., 1998, 72: 548

    ADS  Google Scholar 

  106. T. Junno, M. H. Magnusson, S. B. Carlsson, K. Deppert, J. O. Malm, L. Montelius, and L. Samuelson, Single-electron devices via controlled assembly of designed nanoparticles, Microelectron. Eng., 1999, 47(1–4): 179

    Google Scholar 

  107. C. Thelander, M. H. Magnusson, and K. Deppert, L. Samuelson, P. R. Poulsen, J. Nygård, and J. Borggreen, Gold nanoparticle single-electron transistor with carbon nanotube leads, Appl. Phys. Lett., 2001, 79: 2016

    Google Scholar 

  108. T. Junno, S. B. Carlsson, H. Q. Xu, L. Samuelson, A. O. Orlov, and G. L. Snider, Single-electron tunneling effects in a metallic double dot device, Appl. Phys. Lett., 2002, 80(4): 667

    ADS  Google Scholar 

  109. L. I. Samuelson and K. W. Deppert, United States patent, 2004, US 6,744,065

    Google Scholar 

  110. S. K. Lee, C. M. Zetterling, M. Östling, I. Åberg, M. H. Magnusson, K. Deppert, L. E. Wernersson, L. Samuelson, and A. Litwin, Reduction of the Schottky barrier height on silicon carbide using Au nano-particles, Solid-State Electron., 2002, 46(9): 1433

    ADS  Google Scholar 

  111. L. E. Wernersson, A. Litwin, L. Samuelson, and W. Seifert, Controlled Carrier Depletion around Nano-Scale Metal Discs Embedded in GaAs, Jpn. J. Appl. Phys., 1997, 36: L1628

    ADS  Google Scholar 

  112. L. E. Wernersson, A. Litwin, L. Samuelson, and H. Xu, Operation of a ballistic heterojunction permeable base transistor, IEEE Trans. Electron. Dev., 1997, 44(11): 1829

    ADS  Google Scholar 

  113. L. E. Wernersson, M. Borgström, B. Gustafson, A. Gustafsson, L. Jarlskog, J. O. Malm, A. Litwin, L. Samuelson, and W. Seifert, MOVPE overgrowth of metallic features for realisation of 3D metal-semiconductor quantum devices, J. Cryst. Growth, 2000, 221(1–4): 704

    ADS  Google Scholar 

  114. I. Åberg, K. Deppert, M. H. Magnusson, I. Pietzonka, W. Seifert, L. E. Wernersson, and L. Samuelson, Nanoscale tungsten aerosol particles embedded in GaAs, Appl. Phys. Lett., 2002, 80(16): 2976

    ADS  Google Scholar 

  115. H. Fissan, M. K. Kennedy, T. J. Krinke, and F. E. Kruis, J. Nanopart. Res., 2003, 5(3–4): 299

    Google Scholar 

  116. C. Busch, G. Schierning, R. Theissmann, A. Nedic, F. E. Kruis, and R. Schmechel, Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase, J. Nanopart. Res., 2012, 14(6): 888

    Google Scholar 

  117. K. W. Deppert, C. M. H. Magnusson, L. I. Samuelson, and T. J. Krinke, United States patent, 2007, US 7,223,444

    Google Scholar 

  118. M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Nanowire resonant tunneling diodes, Appl. Phys. Lett., 2002, 81(23): 4458

    ADS  Google Scholar 

  119. L. Samuelson, C. Thelander, M. T. Björk, M. Borgström, K. Deppert, K. A. Dick, A. E. Hansen, T. Mårtensson, N. Panev, A. I. Persson, W. Seifert, N. Sköld, M. W. Larsson, and L. R. Wallenberg, Semiconductor nanowires for 0D and 1D physics and applications, Physica E, 2004, 25(2–3): 313

    ADS  Google Scholar 

  120. C. Thelander, T. Mårtensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Single-electron transistors in heterostructure nanowires, Appl. Phys. Lett., 2003, 83(10): 2052

    ADS  Google Scholar 

  121. M. T. Björk, C. Thelander, A. E. Hansen, L. E. Jensen, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Few-electron quantum dots in nanowires, Nano Lett., 2004, 4(9): 1621

    ADS  Google Scholar 

  122. M. T. Björk, A. Fuhrer, A. E. Hansen, M. W. Larsson, L. E. Fröberg, and L. Samuelson, Tunable effective g factor in InAs nanowire quantum dots, Phys. Rev. B, 2005, 72(20): 201307

    ADS  Google Scholar 

  123. A. Fuhrer, L. E. Fröberg, J. N. Pedersen, M. W. Larsson, A. Wacker, M. E. Pistol, and L. Samuelson, Few electron double quantum dots in InAs/InP nanowire heterostructures, Nano Lett., 2007, 7(2): 243

    ADS  Google Scholar 

  124. A. Fuhrer, C. Fasth, and L. Samuelson, Single electron pumping in InAs nanowire double quantum dots, Appl. Phys. Lett., 2007, 91(5): 052109

    ADS  Google Scholar 

  125. C. Fasth, A. Fuhrer, L. Samuelson, V. N. Golovach, and D. Loss, Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot, Phys. Rev. Lett., 2007, 98(26): 266801

    ADS  Google Scholar 

  126. J. Bao, D. C. Bell, F. Capasso, J. B. Wagner, T. Mårtensson, J. Trägårdh, and L. Samuelson, Optical properties of rotationally twinned InP nanowire heterostructures, Nano Lett., 2008, 8(3): 836

    ADS  Google Scholar 

  127. N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, and V. Zwiller, Crystal phase quantum dots, Nano Lett., 2010, 10(4): 1198

    ADS  Google Scholar 

  128. C. Weber, A. Fuhrer, C. Fasth, G. Lindwall, L. Samuelson, and A. Wacker, Probing confined phonon modes by transport through a nanowire double quantum dot, Phys. Rev. Lett., 2010, 104(3): 036801

    ADS  Google Scholar 

  129. C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gösele, and L. Samuelson, Nanowire-based one-dimensional electronics, Mater. Today, 2006, 9(10): 28

    Google Scholar 

  130. C. Thelander, C. Rehnstedt, L. E. Fröberg, E. Lind, T. Mårtensson, P. Caroff, T. Löwgren, B. J. Ohlsson, L. Samuelson, and L. E. Wernersson, Development of a vertical wrap-gated InAs FET, IEEE Trans. Electron. Dev., 2008, 55(11): 3030

    ADS  Google Scholar 

  131. C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, Monolithic GaAs/InGaP nanowire light emitting diodes on silicon, Nanotechnology, 2008, 19(30): 305201

    ADS  Google Scholar 

  132. L. I. Samuelson, P. Svensson, J. Ohlsson, and T. Löwgren, United States patent, 2011, US 8,049,203

    Google Scholar 

  133. L. I. Samuelson, B. Pedersen, and B. J. Ohlsson, United States patent, 2012, US 8,183,587

    Google Scholar 

  134. B. Pedersen, L. Samuelson, J. Ohlsson, and P. Svensson, United States patent, 2012, US 8,227,817

    Google Scholar 

  135. B. M. Kayes, H. A. Atwater, and N. S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys., 2005, 97(11): 114302

    ADS  Google Scholar 

  136. M. Heurlin, P. Wickert, S. Fält, M. T. Borgström, K. Deppert, L. Samuelson, and M. H. Magnusson, Axial InP nanowire tandem junction grown on a silicon substrate, Nano Lett., 2011, 11(5): 2028

    ADS  Google Scholar 

  137. L. Samuelson, M. Magnusson, and F. Capasso, United States patent application, US 2010/0186809

  138. M. Borgström, M. Heurlin, and S. Fält, United States patent application, US 2012/0199187

  139. N. Anntu and H. Q. Xu, Coupling of light into nanowire arrays and subsequent absorption, J. Nanosci. Nanotechnol., 2010, 10(11): 7183

    Google Scholar 

  140. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit, Science, 2013, 339(6123): 1057

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Samuelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnusson, M.H., Ohlsson, B.J., Björk, M.T. et al. Semiconductor nanostructures enabled by aerosol technology. Front. Phys. 9, 398–418 (2014). https://doi.org/10.1007/s11467-013-0405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0405-x

Keywords

Navigation