Abstract
Cavity growth in ductile metal materials under dynamic loading is investigated via the material point method. Two typical cavity effects in the region subjected to rarefaction wave are identified: (i) part of material particles flow away from the cavity in comparison to the initial loading velocity, (ii) local regions show weaker negative or even positive pressures. Neighboring cavities interact via coalescence of isobaric contours. The growth of cavity under tension shows staged behaviors. After the initial slow stage, the volume and the dimensions in both the tensile and transverse directions show linear growth rate with time until the global tensile wave arrives at the upper free surface. It is interesting that the growth rate in the transverse direction is faster than that in the tensile direction. The volume growth rate linearly increases with the initial tensile velocity. After the global tensile wave passed the cavity, both the maximum particle velocity in the tensile direction and the maximum particle velocity in the opposite direction increase logarithmically with the initial tensile speed. The shock wave reflected back from the cavity and compression wave from the free surface induce the initial behavior of interfacial instabilities such as the Richtmyer-Meshkov instability, which is mainly responsible for the irregularity in the morphology of deformed cavity. The local temperatures and distribution of hot spots are determined by the plastic work. Compared with the dynamical process, the heat conduction is much slower.
This is a preview of subscription content, access via your institution.
References
G. T. Gray, P. J. Maudlin, L. M. Hull, Q. K. Zuo, and S. R. Chen, Predicting material strength, damage, and fracture the synergy between experiment and modeling, J. Fail. Anal. Prev., 2005, 5(3): 7
M. M. Carroll, and A. C. Holt, Static and dynamic Pore-Collapse relations for ductile porous materials, J. Appl. Phys., 1972, 27(3): 1626
J. N. Johnson, Dynamic fracture and spallation in ductile solids, J. Appl. Phys., 1981, 52(4): 2812
R. Becker, The effect of porosity distribution on ductile failure, J. Mech. Phys. Solids, 1987, 35(5): 577
M. Ortiz and A. Molinari, Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material, J. Appl. Mech., 1992, 59(1): 48
D. J. Benson, An analysis of void distribution effects on the dynamic growth and coalescence of voids in ductile metals, J. Mech. Phys. Solids, 1993, 41(8): 1285
X. Y. Wu, K. T. Ramesh, and T. W. Wright, The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading, J. Mech. Phys. Solids, 2003, 51(1): 1
T. Pardoen, I. Doghri, and F. Delannay, Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars, Acta Mater., 1998, 46(2): 541
T. Pardoen and J. W. Hutchinson, An extended model for void growth and coalescence, J. Mech. Phys. Solids, 2000, 48(12): 2467
V. C. Orsini and M. A. Zikry, Void growth and interaction in crystalline materials, Int. J. Plast., 2001, 17(10): 1393
V. Tvergaard and J. W. Hutchinson, Two mechanisms of ductile fracture: Void by void growth versus multiple void interaction, Int. J. Solids Struct., 2002, 39(13–14): 3581
T. I. Zohdi, M. Kachanov, and I. Sevostianov, On perfectly plastic flow in porous material, Int. J. Plast., 2002, 18(12): 1649
D. R. Curran, L. Seaman, and D. A. Shockey, Dynamic failure of solids, Phys. Rep., 1987, 147(5–6): 253
E. T. Seppala, J. Belak, and R. Rudd, Onset of void coalescence during dynamic fracture of ductile metals, Phys. Rev. Lett., 2004, 93(24): 245503
A. K. Zurek, W. R. Thissell, J. N. Johnson, D. L. Tonks, and R. Hixson, Micromechanics of spall and damage in tantalum, J. Mater. Process. Technol., 1996, 60(1–4): 261
A. K. Zurek, J. D. Embury, A. Kelly, W. R. Thissell, R. L. Gustavsen, J. E. Vorthman, and R. S. Hixson, Microstructure of depleted uranium under uniaxial strain conditions, AIP Conf. Proc., 1998, 429: 423
D. L. Tonks, A. K. Zurek, and W. R. Thissell, Void coalescence model for ductile damage, AIP Conf. Proc., 2002, 620: 611
J. P. Bandstra, D. M. Goto, and D. A. Koss, Ductile failure as a result of a void-sheet instability: experiment and computational modeling, Mater. Sci. Eng. A, 1998, 249(1–2): 46
J. P. Bandstra, and D. A. Koss, Modeling the ductile fracture process of void coalescence by void-sheet formation, Mater. Sci. Eng. A, 2001, 319–321: 490
J. P. Bandstra, D. A. Koss, A. Geltmacher, P. Matic, and R. K. Everett, Modeling void coalescence during ductile fracture of a steel, Mater. Sci. Eng. A, 2004, 366(2): 269
M. F. Horstemeyer, M. M. Matalanis, A. M. Sieber, and M. L. Botos, Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence, Int. J. Plasticity, 2000, 16(7): 979
E. T. Sepplälä, J. Belak, and R. E. Rudd, Three-dimensional molecular dynamics simulations of void coalescence during dynamic fracture of ductile metals, Phys. Rev. B, 2005, 71(6): 06411
L. M. Dupuy and R. E. Rudd, Surface identification, meshing and analysis during large molecular dynamics simulations, Model. Simul. Mater. Sci. Eng., 2006, 14(2): 229
W. Pang, G. Zhang, A. G. Xu, and G. Lu, Size effect in void growth and coalescence of face-centered cubic copper crystals, Chin. J. Comp. Phys., 2011, 28: 540 (in Chinese)
W. Pang, P. Zhang, G. Zhang, A. G. Xu, and X. Zhao, The nucleation and growth of nanovoids under high tensile strain rate, Sci. China — Phys. Mech. Astron., 2012, 42: 464
D. Burgess, D. Sulsky, and J. U. Brackbill, Mass matrix formulation of the FLIP particle-in-cell method, J. Comput. Phys., 1992, 103(1): 1
S. Bardenhagen, J. Brackbill, and D. Sulsky, The materialpoint method for granular materials, Comput. Methods Appl. Mech. Eng., 2000, 187(3–4): 529
N. P. Daphalapurkar, H. Lu, D. Coker, and R. Komanduri, Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method, Int. J. Fract., 2007, 143(1): 79
S. Ma, X. Zhang, and X. M. Qiu, Comparison study of MPM and SPH in modeling hypervelocity impact problems, Int. J. Impact Eng., 2009, 36(2): 272
X. F. Pan, A. G. Xu, G. C. Zhang, P. Zhang, J. S. Zhu, S. Ma, and X. Zhang, Three-dimensional multi-mesh material point method for solving collision problems, Commun. Theor. Phys., 2008, 49(5): 1129
X. F. Pan, A. G. Xu, G. C. Zhang, and J. Zhu, Generalized interpolation material point approach to high melting explosive with cavities under shock, J. Phys. D, 2008, 41(1): 015401
A. G. Xu, X. F. Pan, G. C. Zhang, and J. Zhu, Materialpoint simulation of cavity collapse under shock, J. Phys.: Condens. Matter, 2007, 19(32): 326212
A. G. Xu, G. Zhang, X. F. Pan, and J. Zhu, Simulation Study of Shock Reaction on Porous Material, Commun. Theor. Phys., 2009, 51(4): 691
A. G. Xu, G. Zhang, P. Zhang, X. F. Pan, and J. Zhu, Dynamics and thermodynamics of porous HMX-like material under shock, Commun. Theor. Phys., 2009, 52(5): 901
A. G. Xu, G. C. Zhang, H. Li, Y. Ying, X. Yu, and J. Zhu, Temperature pattern dynamics in shocked porous materials, Sci. China — Phys. Mech. Astron., 2010, 53(8): 1466
A. G. Xu, G. C. Zhang, Y. Ying, P. Zhang, and J. Zhu, Shock wave response of porous materials: from plasticity to elasticity, Phys. Scr., 2010, 81(5): 055805
A. G. Xu, G. C. Zhang, H. Li, Y. Ying, and J. Zhu, Dynamical similarity in shock wave response of porous material: From the view of pressure, Comput. Math. Appl., 2011, 61(12): 3618
F. Auricchio and L. B. da Veiga, On a new integration scheme for von-Mises plasticity with linear hardening, Int. J. Numer. Meth. Eng., 2003, 56(10): 1375
B. Zhang, et al., Explosion Physics, Beijing: Ordance Industry Press of China, 1997
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xu, AG., Zhang, GC., Ying, YJ. et al. Simulation study on cavity growth in ductile metal materials under dynamic loading. Front. Phys. 8, 394–404 (2013). https://doi.org/10.1007/s11467-013-0348-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11467-013-0348-2
Keywords
- material point method
- cavity growth
- dynamic loading
- interfacial instability