Abstract
A hierarchical cluster-tendency (HCT) method in analyzing the group structure of networks of the global foreign exchange (FX) market is proposed by combining the advantages of both the minimal spanning tree (MST) and the hierarchical tree (HT). Fifty currencies of the top 50 World GDP in 2010 according to World Bank’s database are chosen as the underlying system. By using the HCT method, all nodes in the FX market network can be “colored” and distinguished. We reveal that the FX networks can be divided into two groups, i.e., the Asia-Pacific group and the Pan-European group. The results given by the hierarchical cluster-tendency method agree well with the formerly observed geographical aggregation behavior in the FX market. Moreover, an oil-resource aggregation phenomenon is discovered by using our method. We find that gold could be a better numeraire for the weekly-frequency FX data.
This is a preview of subscription content, access via your institution.
References and notes
R. N. Mantegna, Hierarchical structure in financial markets, Eur. Phys. J. B, 1999, 11(1): 193
D. M. Song, Z. Q. Jiang, and W. X. Zhou, Statistical properties of world investment networks, Physica A, 2009, 388(12): 2450
S. Lee, M. J. Kim, S. Y. Lee, S. Y. Kim, and J. H. Ban, The effect of the subprime crisis on the credit risk in global scale, Physica A, 2013, 392(9): 2060
S. Ahn, J. Choi, G. Lim, K. Y. Cha, S. Kim, and K. Kim, Identifying the structure of group correlation in the Korean financial market, Physica A, 2011, 390(11): 1991
S. Y. Lee, D. I. Hwang, M. J. Kim, I. G. Koh, and S. Y. Kim, Cross-correlations in volume space: Differences between buy and sell volumes, Physica A, 2011, 390(5): 837
W. S. Jung, S. Chae, J. S. Yang, and H. T. Moon, Characteristics of the Korean stock market correlations, Physica A, 2006, 361(1): 263
A. Garas and P. Argyrakis, Correlation study of the Athens stock exchange, Physica A, 2007, 380: 399
P. Caraiani, Characterizing emerging European stock markets through complex networks: From local properties to self-similar characteristics, Physica A, 2012, 391(13): 3629
T. Heimo, G. Tibély, J. Saramäki, K. Kaski, and J. Kertész, Spectral methods and cluster structure in correlation-based networks, Physica A, 2008, 387(23): 5930
S. Battiston, Inner structure of capital control networks, Physica A, 2004, 338(1–2): 107
M. A. Djauhari, A robust filter in stock networks analysis, Physica A, 2012, 391(20): 5049
T. Heimo, J. Saramäki, J. P. Onnela, and K. Kaski, Spectral and network methods in the analysis of correlation matrices of stock returns, Physica A, 2007, 383(1): 147
G. Tibély, J. P. Onnela, J. Saramäki, K. Kaski, and J. Kertész, Spectrum, intensity and coherence in weighted networks of a financial market, Physica A, 2006, 370(1): 145
B. M. Tabak, T. R. Serra, and D. O. Cajueiro, Topological properties of stock market networks: The case of Brazil, Physica A, 2010, 389(16): 3240
G. Bonanno, G. Caldarelli, F. Lillo, S. Micciche, N. Vandewalle, and R. N. Mantegna, Networks of equities in financial markets, Eur. Phys. J. B, 2001, 38: 363
L. Sandoval Jr, Pruning a minimum spanning tree, Physica A, 2012, 391(8): 2678
W. J. Ma, C. K. Hu, and R. E. Amritkar, Stochastic dynamical model for stock-stock correlations, Phys. Rev. E, 2004, 70(2): 026101
J. P. Onnela, A. Chakraborti, K. Kaski, and J. Kertész, Dynamic asset trees and Black Monday, Physica A, 2003, 324(1–2): 247
J. P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, and A. Kanto, Dynamics of market correlations: Taxonomy and portfolio analysis, Phys. Rev. E, 2003, 68(5): 056110
J. P. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, and A. Kanto, Asset trees and asset graphs in financial markets, Phys. Scr., 2003, T106(1): 48
G. Bonnanno, G. Caldarelli, F. Lillo, and R. N. Mantegna, Topology of correlation-based minimal spanning trees in real and model markets, Phys. Rev. E, 2003, 68(4): 046130
M. H. Jensen, A. Johansen, F. Petroni, and I. Simonsen, Inverse statistics in the foreign exchange market, Physica A, 2004, 340(4): 678
M. McDonald, O. Suleman, S. Williams, S. Howison, and N. F. Johnson, Impact of unexpected events, shocking news and rumours on foreign exchange market dynamics, Phys. Rev. E, 2008, 77(4): 046110
M. McDonald, O. Suleman, S. Williams, S. Howison, and N. F. Johnson, Detecting a currency’s dominance or dependence using foreign exchange network trees, Phys. Rev. E, 2005, 72(4): 046106
S. Drozdz, J. Kwapien, P. Oswiecimka, and R. Rak, The foreign exchange market: return distributions, multifractality, anomalous multifractality and the Epps effect, New J. Phys., 2010, 12(10): 105003
W. Jang, J. Lee, and W. Chang, Currency crises and the evolution of foreign exchange market evidence from minimum spanning tree, Physica A, 2011, 390(4): 707
M. Keskin, B. Deviren, and Y. Kocakaplan, Topology of the correlation networks among major currencies using hierarchical structure methods, Physica A, 2011, 390(4): 719
G. J. Wang, C. Xie, F. Han, and B. Sun, Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree, Physica A, 2012, 391(16): 4136
J. Kwapien, S. Gworek, S. Drozdz, and A. Gorski, Analysis of a network structure of the foreign currency exchange market, J. Econ. Interact. Coord, 2009, 4(1): 55
R. N. Mantegna and H. Eugene Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge: Cambridge University Press, 2010
E. Kantar, B. Deviren, and M. Keskin, Hierarchical structure of Turkey’s foreign trade, Physica A, 2011, 390(20): 3454
Y. Kocakaplan, B. Deviren, and M. Keskin, Hierarchical structures of correlations networks among Turkey’s exports and imports by currencies, Physica A, 2012, 391(24): 6509
M. J. Naylora, L. C. Rose, and B. J. Moyle, Topology of foreign exchange markets using hierarchical structure methods, Physica A, 2007, 382(1): 199
R. Rammel, G. Toulouse, and M. A. Virasoro, Ultrametricity for physicists, Rev. Mod. Phys., 1986, 58(3): 765
J. P. Onnela and M. Sc, Taxonomy of Financial Assets, Thesis, Helsinki University of Technology, 2002
D. M. Song, M. Tumminello, W. X. Zhou, and R. N. Mantegna, Evolution of worldwide stock markets, correlation structure, and correlation-based graphs, Phys. Rev. E, 2011, 84(2): 026108
M. Eryiǧit and R. Eryiǧit, Network structure of crosscorrelations among the world market indices, Physica A, 2009, 388(17): 3551
G. Bonanno, N. Vandewalle, and R. N. Mantegna, Taxonomy of stock market indices, Phys. Rev. E, 2000, 62(6): R7615
R. Coelho, C. G. Gilmore, B. Lucey, P. Richmond, and S. Hutzler, The evolution of interdependence in world equity markets — Evidence from minimum spanning trees, Physica A, 2007, 376: 455
E. Kantar, B. Deviren, and M. Keskin, Hierarchical structure of Turkey’s foreign trade, Physica A, 2011, 390(20): 3454
Y. Kocakaplan, Ş. Doǧan, B. Deviren, and M. Keskin, Correlations, hierarchies and networks of the world’s automotive companies, Physica A, 2013, 392(12): 2736
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, XY., Zheng, ZG. Hierarchical cluster-tendency analysis of the group structure in the foreign exchange market. Front. Phys. 8, 451–460 (2013). https://doi.org/10.1007/s11467-013-0346-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11467-013-0346-4
Keywords
- foreign-exchange market
- hierarchical cluster-tendency method
- hierarchical tree
- minimum spanning tree