Skip to main content

Evolution law of Wigner function in laser process

Abstract

Based on the density operator’s operator-sum representation recently obtained by Fan and Hu for a laser process (Opt. Commun., 2008, 281: 5571; Opt. Commun., 2009, 282: 932; Phys. Lett. B, 2008, 22: 2435), we derive the evolution law of Wigner operator, the law is concisely expressed in the normally ordered form \(\Delta (\alpha ,\alpha ^* ,t) = \tfrac{T} {\pi }:\exp [ - 2T(a^\dag e^{ - (\kappa - g)t} - \alpha ^* )(ae^{ - (\kappa - g)t} - \alpha )] \):, where g and κ are the cavity gain and the loss, respectively, and T ≡ (κ − g)(κ + g − 2ge−2(κ−g)t)−1:, When \(t = 0,\Delta (\alpha ,\alpha ^* ,t) \to \tfrac{1} {\pi }:\exp [ - 2(a^\dag - \alpha ^* )(a - \alpha )] \);, which is the initial Wigner operator. Using this formalism the evolution law of Wigner functions in laser process can be directly obtained.

This is a preview of subscription content, access via your institution.

References

  1. D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer, 1995

    Google Scholar 

  2. M. Orszag, Quantum Optics, Berlin: Springer, 2000

    MATH  Google Scholar 

  3. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997

    Book  Google Scholar 

  4. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations, Berlin: Springer, 1999

    MATH  Google Scholar 

  5. H. Y. Fan and L. Y. Hu, New approach for analyzing time evolution of density operator in a dissipative channel by the entangled state representation, Opt. Commun., 2008, 281(22): 5571

    Article  MathSciNet  ADS  Google Scholar 

  6. H. Y. Fan and L. Y. Hu, Infinite-dimensional Kraus operators for describing amplitude-damping channel and laser process, Opt. Commun., 2009, 282(5): 932

    Article  ADS  Google Scholar 

  7. H. Y. Fan and L. Y. Hu, Operator-sum representation of density operators as solutions to master equations obtained via entangled state approach, Mod. Phys. Lett. B, 2008, 22(25): 2435

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 1932, 40(5): 749

    Article  MathSciNet  ADS  Google Scholar 

  9. H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momenent., Phys. Rev. A, 1994, 49(2): 704

    Article  ADS  MATH  Google Scholar 

  10. H. Y. Fan, Common eigenstates of two particles’ center-of-mass coordinates and mass-weighted relative momentum, Phys. Rev. A, 1995, 51(4): 3343

    Article  Google Scholar 

  11. H. Y. Fan, New application of thermo field dynamics in simplifying the calculation of Wigner functions, Mod. Phys. Lett. A, 2003, 18(11): 733

    Article  ADS  MATH  Google Scholar 

  12. F. Chen and H. Y. Fan, A new approach to the time evolution of characteristic function of the density operator obtained by virtue of thermal entangled state representation, Sci. China-Phys. Mech. Astron., 2012, 55(11): 2076

    Article  ADS  Google Scholar 

  13. H. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States, Amsterdam: North-Holland Publishing Company, 1982

    Google Scholar 

  14. H. Y. Fan and J. Vanderlinde, Simple approach to the wave functions of one and two-mode squeezed states, Phys. Rev. A, 1989, 39(3): 1552

    Article  MathSciNet  ADS  Google Scholar 

  15. H. Y. Fan, Squeezed states: Operators for two types of one- and two-mode squeezing transformations, Phys. Rev. A, 1990, 41(3): 1526

    Article  ADS  Google Scholar 

  16. H. Y. Fan, H. C. Yuan, and N. Q. Jiang, Deriving new operator identities by alternately using normally, antinormally, and Weyl ordered integration technique, Sci. China-Phys. Mech. Astron., 2010, 53(9): 1626

    Article  ADS  Google Scholar 

  17. H. Y. Fan and J. Zhou, Coherent state and normal ordering method for transiting Hermite polynomials to Laguerre polynomials, Sci. China-Phys. Mech. Astron., 2012, 55(4): 605

    Article  ADS  Google Scholar 

  18. R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev., 1963, 131(6): 2766

    Article  MathSciNet  ADS  Google Scholar 

  19. J. R. Klauder and B. S. Skargerstam, Coherent States, Singapore: World Scientific Press, 1985

    MATH  Google Scholar 

  20. L. Y. Hu and H. Y. Fan, Time evolution of Wigner function in laser process derived by entangled state representation, Opt. Commun., 2009, 282(22): 4379

    Article  ADS  Google Scholar 

  21. H. Y. Fan and L. Y. Hu, Correspondence between quantumoptical transform and classical-optical transform explored by developing Dirac’s symbolic method, Front. Phys., 2012, 7(3): 261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Hua Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

He, R., Chen, JH. & Fan, HY. Evolution law of Wigner function in laser process. Front. Phys. 8, 381–385 (2013). https://doi.org/10.1007/s11467-013-0334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0334-8

Keywords

  • Kraus operator
  • Wigner operator
  • laser process