Abstract
Based on the density operator’s operator-sum representation recently obtained by Fan and Hu for a laser process (Opt. Commun., 2008, 281: 5571; Opt. Commun., 2009, 282: 932; Phys. Lett. B, 2008, 22: 2435), we derive the evolution law of Wigner operator, the law is concisely expressed in the normally ordered form \(\Delta (\alpha ,\alpha ^* ,t) = \tfrac{T} {\pi }:\exp [ - 2T(a^\dag e^{ - (\kappa - g)t} - \alpha ^* )(ae^{ - (\kappa - g)t} - \alpha )] \):, where g and κ are the cavity gain and the loss, respectively, and T ≡ (κ − g)(κ + g − 2ge−2(κ−g)t)−1:, When \(t = 0,\Delta (\alpha ,\alpha ^* ,t) \to \tfrac{1} {\pi }:\exp [ - 2(a^\dag - \alpha ^* )(a - \alpha )] \);, which is the initial Wigner operator. Using this formalism the evolution law of Wigner functions in laser process can be directly obtained.
This is a preview of subscription content, access via your institution.
References
D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer, 1995
M. Orszag, Quantum Optics, Berlin: Springer, 2000
M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge: Cambridge University Press, 1997
H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations, Berlin: Springer, 1999
H. Y. Fan and L. Y. Hu, New approach for analyzing time evolution of density operator in a dissipative channel by the entangled state representation, Opt. Commun., 2008, 281(22): 5571
H. Y. Fan and L. Y. Hu, Infinite-dimensional Kraus operators for describing amplitude-damping channel and laser process, Opt. Commun., 2009, 282(5): 932
H. Y. Fan and L. Y. Hu, Operator-sum representation of density operators as solutions to master equations obtained via entangled state approach, Mod. Phys. Lett. B, 2008, 22(25): 2435
E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 1932, 40(5): 749
H. Y. Fan and J. R. Klauder, Eigenvectors of two particles’ relative position and total momenent., Phys. Rev. A, 1994, 49(2): 704
H. Y. Fan, Common eigenstates of two particles’ center-of-mass coordinates and mass-weighted relative momentum, Phys. Rev. A, 1995, 51(4): 3343
H. Y. Fan, New application of thermo field dynamics in simplifying the calculation of Wigner functions, Mod. Phys. Lett. A, 2003, 18(11): 733
F. Chen and H. Y. Fan, A new approach to the time evolution of characteristic function of the density operator obtained by virtue of thermal entangled state representation, Sci. China-Phys. Mech. Astron., 2012, 55(11): 2076
H. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo Field Dynamics and Condensed States, Amsterdam: North-Holland Publishing Company, 1982
H. Y. Fan and J. Vanderlinde, Simple approach to the wave functions of one and two-mode squeezed states, Phys. Rev. A, 1989, 39(3): 1552
H. Y. Fan, Squeezed states: Operators for two types of one- and two-mode squeezing transformations, Phys. Rev. A, 1990, 41(3): 1526
H. Y. Fan, H. C. Yuan, and N. Q. Jiang, Deriving new operator identities by alternately using normally, antinormally, and Weyl ordered integration technique, Sci. China-Phys. Mech. Astron., 2010, 53(9): 1626
H. Y. Fan and J. Zhou, Coherent state and normal ordering method for transiting Hermite polynomials to Laguerre polynomials, Sci. China-Phys. Mech. Astron., 2012, 55(4): 605
R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev., 1963, 131(6): 2766
J. R. Klauder and B. S. Skargerstam, Coherent States, Singapore: World Scientific Press, 1985
L. Y. Hu and H. Y. Fan, Time evolution of Wigner function in laser process derived by entangled state representation, Opt. Commun., 2009, 282(22): 4379
H. Y. Fan and L. Y. Hu, Correspondence between quantumoptical transform and classical-optical transform explored by developing Dirac’s symbolic method, Front. Phys., 2012, 7(3): 261
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
He, R., Chen, JH. & Fan, HY. Evolution law of Wigner function in laser process. Front. Phys. 8, 381–385 (2013). https://doi.org/10.1007/s11467-013-0334-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11467-013-0334-8
Keywords
- Kraus operator
- Wigner operator
- laser process