Abstract
We investigate the structural and elastic properties of hexagonal Ce2O3 under pressure using LDA+U scheme in the frame of density functional theory (DFT). The obtained lattice constants and bulk modulus agree well with the available experimental and other theoretical data. The pressure dependences of normalized lattice parameters a/a 0 and c/c 0, ratio c/a, and normalized primitive volume V/V 0 of Ce2O3 are obtained. Moreover, the pressure dependences of elastic properties and three anisotropies of elastic waves of Ce2O3 are investigated for the first time. We find that the negative value of C 44 is indicative of the structural instability of the hexagonal structure Ce2O3 at zero temperature and 30 GPa. Finally, the density of states (DOS) of Ce2O3 under pressure is investigated.
This is a preview of subscription content, access via your institution.
References and notes
A. Trovarelli, Catalysis by Ceria and Related Materials, London: Imperial College Press, 2002
M. Kobayashi, and M. Ishii, Excellent radiation-resistivity of cerium-doped gadolinium silicate scintillators, Nucl. Instrum. Methods B, 1991, 61(4): 491
H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater., 1985, 131(2–3): 221
J. Graciani, A. M. Márquez, J. J. Plata, Y. Ortega, N. C. Hernández, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: The case of CeO2 and Ce2 O3, J. Chem. Theory Comput., 2011, 7(1): 5
T. Yamamoto, H. Momida, T. Hamada, T. Uda, and T. Ohno, First-principles study of dielectric properties of cerium oxide, Thin Solid Films, 2005, 486(1–2): 136
O. L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids, 1963, 24(7): 909
A. I. Shelykh, A. V. Prokofiev, and B. T. Melekh, Fiz. Tverd. Tela, 1996, 38: 91
A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series, J. Alloy. Comp., 1996, 242(1–2): 41
V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B, 1991, 44(3): 943
D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, Modeling of CeO2, Ce2 O3, and CeO2tx in the LDA+U formalism, Phys. Rev. B, 2007, 75(3): 035109
C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, Firstprinciples LDA+U and GGA+ U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B, 2007, 75(3): 035115
J. L. F. Da Silva, Stability of the Ce2O3 phases: A DFT+U investigation, Phys. Rev. B, 2007, 76(19): 193108
L. V. Pourovskii, B. Amadon, S. Biermann, and A. Georges, Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications, Phys. Rev. B, 2007, 76(23): 235101
B. Amadon, A self-consistent DFT + DMFT scheme in the projector augmented wave method: applications to cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT + U, J. Phys.: Condens. Matter, 2012, 24(7): 075604
H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Localized and itinerant states in lanthanide oxides united by GW@LDA+U, Phys. Rev. Lett., 2009, 102(12): 126403
P. J. Hay, R. L. Martin, J. Uddin, and G. E. Scuseria, Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional, J. Chem. Phys., 2006, 125(3): 034712
A. D. Becke, A new mixing of Hartree-Fock and local density-functional theories, J. Chem. Phys., 1993, 98(2): 1372
J. L. F. Da Silva, M. V. Ganduglia-Pirovano, and J. Sauer, Stability of the Ce2O3 phases: A DFT+U investigation, Phys. Rev. B, 2007, 76(19): 193108
M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys., 1992, 64(4): 1045
V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum Chem., 2000, 77(5): 895
S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys., 1980, 58(8): 1200
H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B, 1976, 13(12): 5188
D. C. Wallace, Thermodynamics of Crystals, New York: Wiley, 1972
W. Voigt, Lehrbuch der Kristallphysik, Leipzig: Taubner, 1928
A. Reuss, Berechnung der Fließerenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle, Z. Angew. Math. Mech., 1929, 9(1): 49
K. B. Panda, and K. S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comput. Mater. Sci., 2006, 35(2): 134
Y. J. Hao, X. R. Chen, H. L. Cui, and Y. L. Bai, Firstprinciples calculations of elastic constants of c-BN, Physica B, 2006, 382(1–2): 118
Z. L. Liu, X. R. Chen, and Y. L. Wang, First-principles calculations of elastic properties of LiBC, Physica B, 2006, 381(1–2): 139
X. F. Li, G. F. Ji, F. Zhao, X. R. Chen, and D. Alfê, Firstprinciples calculations of elastic and electronic properties of NbB2 under pressure, J. Phys.: Condens. Matter, 2009, 21(2): 025505
X. L. Yuan, D. Q. Wei, Y. Cheng, G. F. Ji, Q. M. Zhang, and Z. Z. Gong, Pressure effects on elastic and thermodynamic properties of Zr3Al intermetallic compound, Comput. Mater. Sci., 2012, 58: 125
P. Wang, C. G. Piao, R. Y. Meng, Y. Cheng, and G. F. Ji, Elastic and electronic properties of YNi2B2C under pressure from first principles, Physica B, 2012, 407: 227
P. Wang, Y. Cheng, X. H. Zhu, X. R. Chen, and G. F. Ji, First principles investigations on elastic and electronic properties of BaHfN2 under pressure, J. Alloy. Comp., 2012, 526: 74
H. Barnighausen and G. Schiller, The crystal structure of A-Ce2O3, J. Less Common Met., 1985, 110(1–2): 385
F. Birch, Finite elastic strain of cubic crystals, Phys. Rev., 1947, 71(11): 809
G. V. Sin’ko and N. A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys.: Condens. Matter, 2002, 14(29): 6989
S. F. Pugh, Philos. Mag., 1954, 45: 833
M. A. Auld, Acoustic Fields and Waves in Solids, Vol. I, New York: Wiley, 1973
G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, Firstprinciples elastic constants for the hcp transition metals Fe, Co, and Re at high pressure, Phys. Rev. B, 1999, 60(2): 791
M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford: Clarendon, 1954
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Qi, YY., Niu, ZW., Cheng, C. et al. Structural and elastic properties of Ce2O3 under pressure from LDA+U method. Front. Phys. 8, 405–411 (2013). https://doi.org/10.1007/s11467-013-0331-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11467-013-0331-y
Keywords
- elastic properties
- high pressure
- density functional theory
- Ce2O3