Frontiers of Physics

, Volume 9, Issue 3, pp 257–288 | Cite as

Progress of nanoscience in China

  • Yu-Liang Zhao
  • Yan-Lin Song
  • Wei-Guo Song
  • Wei Liang
  • Xing-Yu Jiang
  • Zhi-Yong Tang
  • Hong-Xing Xu
  • Zhi-Xiang Wei
  • Yun-Qi Liu
  • Ming-Hua Liu
  • Lei Jiang
  • Xin-He Bao
  • Li-Jun Wan
  • Chun-Li BaiEmail author
Review Article


Fast evolving nanosciences and nanotechnology in China has made it one o f the front countries of nanotechnology development. In this review, we summarize some most recent progresses in nanoscience research and nanotechnology development in China. The topics we selected in this article include nano-fabrication, nanocatalysis, bioinspired nanotechnology, green printing nanotechnology, nanoplasmonics, nanomedicine, nanomaterials and their applications, energy and environmental nanotechnology, nano EHS (nanosafety), etc. Most of them have great potentials in applications or application-related key issues in future.


nanoscience nanotechnology nanomaterials nanomedicine plasmonics fabrication catalysis nano EHS (nanosafety) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. L. Bai, Global voices of science: Ascent of nanoscience in China, Science, 2005, 309(5731): 61Google Scholar
  2. 2.
    T. Chen, Q. Chen, X. Zhang, D. Wang, and L. J. Wan, Chiral Kagome network from thiacalix[4]arene tetrasulfonate at the interface of aqueous solution/Au(111) surface: An in situ electrochemical scanning tunneling microscopy study, J. Am. Chem. Soc., 2010, 132(16): 5598Google Scholar
  3. 3.
    S. S. Li, B. H. Northrop, Q. H. Yuan, L. J. Wan, and P. J. Stang, Surface confined metallosupramolecular architectures: Formation and scanning tunneling microscopy characterization, Acc. Chem. Res., 2009, 42(2): 249Google Scholar
  4. 4.
    Q. Chen, T. Chen, G. B. Pan, H. J. Yan, W. G. Song, L. J. Wan, Z. T. Li, Z. H. Wang, B. Shang, L. F. Yuan, and J. L. Yang, Structural selection of graphene supramolecular assembly oriented by molecular conformation and alkyl chain, Proc. Natl. Acad. Sci. USA, 2008, 105(44): 16849ADSGoogle Scholar
  5. 5.
    J. Liu, T. Chen, X. Deng, D. Wang, J. Pei, and L. J. Wan, Chiral hierarchical molecular nanostructures on twodimensional surface by controllable trinary self-assembly, J. Am. Chem. Soc., 2011, 133(51): 21010Google Scholar
  6. 6.
    L. J. Wan, Fabricating and controlling molecular self-organization at solid surfaces: studies by scanning tunneling microscopy, Acc. Chem. Res., 2006, 39(5): 334Google Scholar
  7. 7.
    J. S. Hu, Y. G. Guo, H. P. Liang, L. J. Wan, and L. Jiang, Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms, J. Am. Chem. Soc., 2005, 127(48): 17090Google Scholar
  8. 8.
    J. S. Hu, L. S. Zhong,W. G. Song, and L. J. Wan, Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal, Adv. Mater., 2008, 20(15): 2977Google Scholar
  9. 9.
    H. P. Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan, and C. L. Bai, Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts, Angew. Chem. Int. Ed. Engl., 2004, 43(12): 1540Google Scholar
  10. 10.
    A. M. Cao, J. S. Hu, H. P. Liang, and L. J. Wan, Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries, Angew. Chem. Int. Ed. Engl., 2005, 44(28): 4391Google Scholar
  11. 11.
    Y. G. Guo, J. S. Hu, and L. J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater., 2008, 20(15): 2878Google Scholar
  12. 12.
    X. Sen, Y. G. Guo, and L. J. Wan, Nanocarbon networks for advanced rechargeable lithium batteries, Acc. Chem. Res., 2012, 45(10): 1759Google Scholar
  13. 13.
    S. Xin, L. Gu, N. H. Zhao, Y. X. Yin, L. J. Zhou, Y. G. Guo, and L. J. Wan, Smaller sulfur molecules promise better lithium-sulfur batteries, J. Am. Chem. Soc., 2012, 134(45): 18510Google Scholar
  14. 14.
    Y. Q. Wang, L. Gu, Y. G. Guo, H. Li, X. Q. He, S. Tsukimoto, Y. lkuhara, and L. J. Wan, Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery, J. Am. Chem. Soc., 2012, 134(18): 7874Google Scholar
  15. 15.
    D. J. Xue, S. Xin, Y. Yan, K. C. Jiang, Y. X. Yin, Y. G. Guo, and L. J. Wan, Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks, J. Am. Chem. Soc., 2012, 134(5): 2512Google Scholar
  16. 16.
    X. L. Pan and X. H. Bao, Reactions over catalysts confined in carbon nanotubes, Chem. Commun., 2008, 47(47): 6271Google Scholar
  17. 17.
    X. L. Pan and X. H. Bao, The effects of confinement inside carbon nanotubes on catalysis, Acc. Chem. Res., 2011, 44(8): 553MathSciNetGoogle Scholar
  18. 18.
    D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, and X. Bao, Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction, Angew. Chem. Int. Ed., 2013, 52(1): 371Google Scholar
  19. 19.
    W. Chen, Z. L. Fan, X. L. Pan, and X. H. Bao, Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst, J. Am. Chem. Soc., 2008, 130(29): 9414Google Scholar
  20. 20.
    W. Chen, X. L. Pan, and X. H. Bao, Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes, J. Am. Chem. Soc., 2007, 129(23): 7421Google Scholar
  21. 21.
    W. Chen, X. L. Pan, M. G. Willinger, D. S. Su, and X. H. Bao, Facile autoreduction of iron oxide/carbon nanotube encapsulates, J. Am. Chem. Soc., 2006, 128(10): 3136Google Scholar
  22. 22.
    X. L. Pan, Z. L. Fan, W. Chen, Y. J. Ding, H. Y. Luo, and X. H. Bao, Enhanced ethanol production in side carbon-nanotube reactors containing catalytic particles, Nat. Mater., 2007, 6(7): 507ADSGoogle Scholar
  23. 23.
    Q. Fu, W. X. Li, Yunxi Yao, H. Y. Liu, H. Y. Su, D. Ma, X. K. Gu, L. M. Chen, Z. Wang, H. Zhang, B. Wang, and X. H. Bao, Interface-confined ferrous centers for catalytic oxidation, Science, 2010, 328(5982): 1141ADSGoogle Scholar
  24. 24.
    R. T. Mu, Q. Fu, L. Jin, L. Yu, G. Z. Fang, D. L. Tan, and X. H. Bao, Visualizing chemical reactions confined under graphene, Angew. Chem. Int. Ed. Engl., 2012, 51(20): 4856Google Scholar
  25. 25.
    Q. Fu, F. Yang, and X. H. Bao, Interface-confined oxide nanostructures for catalytic oxidation reactions, Acc. Chem. Res., 2013 (in press)Google Scholar
  26. 26.
    L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, Super-hydrophobic surfaces: from natural to artificial, Adv. Mater., 2002, 14(24): 1857Google Scholar
  27. 27.
    T. Sun, L. Feng, X. F. Gao, and L. Jiang, Bioinspired surfaces with special wettability, Acc. Chem. Res., 2005, 38(8): 644Google Scholar
  28. 28.
    F. Xia and L. Jiang, Bio-inspired, smart, multiscale interfacial materials, Adv. Mater., 2008, 20(15): 2842Google Scholar
  29. 29.
    M. J. Liu, S. T. Wang, Z. X. Wei, Y. L. Song, and L. Jiang, Bioinspired design of a superoleophobic and low adhesive water/solid interface, Adv. Mater., 2009, 21(6): 665Google Scholar
  30. 30.
    Y. M. Zheng, H. Bai, Z. B. Huang, X. L. Tian, F. Q. Nie, Y. Zhao, J. Zhai, and L. Jiang, Directional water collection on wetted spider silk, Nature, 2010, 463(7281): 640ADSGoogle Scholar
  31. 31.
    H. Bai, J. Ju, R. Z. Sun, Y. Chen, Y. M. Zheng, and L. Jiang, Controlled fabrication and water collection ability of bioinspired artificial spider silks, Adv. Mater., 2011, 23(32): 3708Google Scholar
  32. 32.
    X. Hou, W. Guo, and L. Jiang, Biomimetic smart nanopores and nanochannels, Chem. Soc. Rev., 2011, 40(5): 2385Google Scholar
  33. 33.
    W. Guo, L. X. Cao, J. C. Xia, F. Q. Nie, W. Ma, J. M. Xue, Y. L. Song, D. B. Zhu, Y. G. Wang, and L. Jiang, Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 2010, 20(8): 1339Google Scholar
  34. 34.
    S. Wang, H. Wang, J. Jiao, K. J. Chen, G. E. Owens, K. I. Kamei, J. Sun, D. J. Sherman, C. P. Behrenbruch, H. Wu, and H. R. Tseng, Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells, Angew. Chem. Int. Ed. Engl., 2009, 48(47): 8970Google Scholar
  35. 35.
    S. Wang, K. Liu, J. Liu, Z. T. F. Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y. K. Lee, L. W. K. Chung, J. Huang, M. Rettig, D. Seligson, K. N. Duraiswamy, C. K. F. Shen, and H. R. Tseng, Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers, Angew. Chem. Int. Ed. Engl., 2011, 50(13): 3084Google Scholar
  36. 36.
    L. Chen, X. L. Liu, B. Su, J. Li, L. Jiang, D. Han, and S. T. Wang, Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces, Adv. Mater., 2011, 23(38): 4376Google Scholar
  37. 37.
    H. B. Yao, Z. H. Tan, H. Y. Fang, and S. H. Yu, Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks, Angew. Chem. Int. Ed. Engl., 2010, 49(52): 10127Google Scholar
  38. 38.
    H. B. Yao, H. Y. Fang, Z. H. Tan, L. H. Wu, and S. H. Yu, Biologically inspired, strong, transparent, and functional layered organic-inorganic hybrid films, Angew. Chem. Int. Ed. Engl., 2010, 49(12): 2140Google Scholar
  39. 39.
    J. F. Wang, L. Lin, Q. F. Cheng, and L. Jiang, A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel, Angew. Chem. Int. Ed. Engl., 2012, 51(19): 4676Google Scholar
  40. 40.
    Y. Demao, Practical Guide of Photosensitive Material and Print Plate, Beijing: Graphic Communications Press, 2007: 53Google Scholar
  41. 41.
    H. H. Zhou and Y. L. Song, Green plate making technology based on nano-materials, Adv. Mater. Res., 2011, 174: 447Google Scholar
  42. 42.
    C. Neinhuis and W. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot., 1997, 79(6): 667Google Scholar
  43. 43.
    X. F. Gao and L. Jiang, Biophysics: Water-repellent legs of water striders, Nature, 2004, 432(7013): 36ADSGoogle Scholar
  44. 44.
    X. Yao, Y. L. Song, and L. Jiang, Applications of bioinspired special wettable surfaces, Adv. Mater., 2011, 23(6): 719Google Scholar
  45. 45.
    R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 1936, 28(8): 988Google Scholar
  46. 46.
    A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 1944, 40: 546Google Scholar
  47. 47.
    J. X. Wang, Y. Zhang, S. Wang, Y. L. Song, and L. Jiang, Bioinspired colloidal photonic crystals with controllable wettability, Acc. Chem. Res., 2011, 44(6): 405Google Scholar
  48. 48.
    Y. Huang, M. Liu, J. X. Wang, J. M. Zhou, L. B. Wang, Y. L. Song, and L. Jiang, Controllable underwater oil-adhesioninterface films assembled from nonspherical particles, Adv. Funct. Mater., 2011, 21(23): 4436Google Scholar
  49. 49.
    W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature, 2003, 424(6950): 824ADSGoogle Scholar
  50. 50.
    Z. Y. Fang, L. R. Fan, C. F. Lin, D. Zhang, A. J. Meixner, and X. Zhu, Plasmonic coupling of bow tie antennas with Ag nanowire, Nano Lett., 2011, 11(4): 1676ADSGoogle Scholar
  51. 51.
    X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits, Nano Lett., 2009, 9(12): 4515ADSGoogle Scholar
  52. 52.
    Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Branched silver nanowires as controllable plasmon routers, Nano Lett., 2010, 10(5): 1950ADSGoogle Scholar
  53. 53.
    S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Chiral surface plasmon polaritons on metallic nanowires, Phys. Rev. Lett., 2011, 107(9): 096801ADSGoogle Scholar
  54. 54.
    H. Wei, Z. P. Li, X. R. Tian, Z. X. Wang, F. Z. Cong, N. Liu, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Quantum dot-based local field imaging reveals plasmonbased interferometric logic in silver nanowire networks, Nano Lett., 2011, 11(2): 471ADSGoogle Scholar
  55. 55.
    H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu,, Cascaded logic gates in nanophotonic plasmon networks, Nat. Commun., 2011, 2: 387ADSGoogle Scholar
  56. 56.
    Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array, Phys. Rev. Lett., 2008, 101(8): 087401ADSGoogle Scholar
  57. 57.
    X. B. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration, Phys. Rev. Lett., 2006, 97(7): 073901ADSGoogle Scholar
  58. 58.
    H. S. Chen, B. I. Wu, B. Zhang, and J. A. Kong, Electromagnetic wave interactions with a metamaterial cloak, Phys. Rev. Lett., 2007, 99(6): 063903ADSGoogle Scholar
  59. 59.
    X. R. Huang, R. W. Peng, and R. H. Fan, Making metals transparent for white light by spoof surface plasmons, Phys. Rev. Lett., 2010, 105(24): 243901ADSGoogle Scholar
  60. 60.
    R. H. Fan, R. W. Peng, X. R. Huang, J. Li, Y. Liu, Q. Hu, M. Wang, and X. Zhang, Transparent metals for ultrabroadband electromagnetic waves, Adv. Mater., 2012, 24(15): 1980Google Scholar
  61. 61.
    S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater., 2012, 11(5): 426ADSGoogle Scholar
  62. 62.
    Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, Wavefront shaping of infrared light through a subwavelength hole, Light: Science & Applications, 2012, 1(8): e26Google Scholar
  63. 63.
    L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Plasmonic Airy beam generated by in-plane diffraction, Phys. Rev. Lett., 2011, 107(12): 126804ADSGoogle Scholar
  64. 64.
    H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering, Phys. Rev. Lett., 1999, 83(21): 4357ADSGoogle Scholar
  65. 65.
    Z. Q. Tian, B. Ren, and D. Y. Wu, Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B, 2002, 106(37): 9463Google Scholar
  66. 66.
    J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature, 2010, 464(7287): 392ADSGoogle Scholar
  67. 67.
    H. Wei, F. Hao, Y. Huang, W. Wang, P. Nordlander, and H. Xu, Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems, Nano Lett., 2008, 8(8): 2497ADSGoogle Scholar
  68. 68.
    H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, Individual nanometer hole-particle pairs for surface-enhanced Raman scattering, Small, 2008, 4(9): 129Google Scholar
  69. 69.
    H. Y. Liang, Z. P. Li, W. Z. Wang, Y. S. Wu, and H. X. Xu, Highly surface-roughened flower-like silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering, Adv. Mater., 2009, 21(45): 4614Google Scholar
  70. 70.
    Y. R. Fang, H. Wei, F. Hao, P. Nordlander, and H. X. Xu, Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons, Nano Lett., 2009, 9(5): 2049ADSGoogle Scholar
  71. 71.
    M. T. Sun, Z. Zhang, H. Zheng, and H. X. Xu, In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy, Scientific Reports, 2012, 2: 647ADSGoogle Scholar
  72. 72.
    Z. Liu, S. Y. Ding, Z. B. Chen, X. Wang, J. H. Tian, J. R. Anema, X. S. Zhou, D. Y. Wu, B. W. Mao, X. Xu, B. Ren, and Z. Q. Tian, Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy, Nat. Commun., 2011, 2: 305Google Scholar
  73. 73.
    C. Y. Chen, G. M. Xing, J. X. Wang, Y. L. Zhao, B. Li, J. Tang, G. Jia, T. C. Wang, J. Sun, L. Xing, H. Yuan, Y. X. Gao, H. Meng, Z. Chen, F. Zhao, Z. F. Chai, and X. H. Fang, Multihydroxylated [Gd@C82(OH)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity, Nano Lett., 2005, 5(10): 2050ADSGoogle Scholar
  74. 74.
    X. J. Liang, H. Meng, Y. Wang, H. Y. He, J. Meng, J. Lu, P. C. Wang, Y. Zhao, X. Gao, B. Sun, C. Y. Chen, G. Xing, D. Shen, M. M. Gottesman, Y. Wu, J. J. Yin, and L. Jia, Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis, Proc. Natl. Acad. Sci. USA, 2010, 107(16): 7449ADSGoogle Scholar
  75. 75.
    S. G. Kang, G. Q. Zhou, P. Yang, Y. Liu, B. Y. Sun, T. Huynh, H. Meng, L. N. Zhao, G. M. Xing, C. Y. Chen, Y. L. Zhao, and R. H. Zhou, Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15431ADSGoogle Scholar
  76. 76.
    X. W. Ma, Y. L. Zhao, and X. J. Liang, Theranostic nanoparticles engineered for clinic and pharmaceutics, Acc. Chem. Res., 2011, 44(10): 1114Google Scholar
  77. 77.
    J. Tang, G. M. Xing, Y. L. Zhao, L. Jing, X. F. Gao, Y. Cheng, H. Yuan, F. Zhao, Z. Chen, H. Meng, H. Zhang, H. J. Qian, R. Su, and K. Ibrahim, Periodical variation of electronic properties in polyhydroxylated metallofullerene materials, Adv. Mater., 2006, 18(11): 1458Google Scholar
  78. 78.
    L. Yan, Y. B. Zheng, F. Zhao, S. J. Li, X. F. Gao, B. Q. Xu, P. S. Weiss, and Y. L. Zhao, Chemistry and physics of a single atomic layer: Strategies and challenges for functionalization of graphene and graphene-based materials, Chem. Soc. Rev., 2012, 41(1): 97Google Scholar
  79. 79.
    H. Meng, G. M. Xing, B. Y. Sun, F. Zhao, H. Lei, W. Li, Y. Song, and Z. Chen, H. Yuan, X. X. Wang, J. Long, C. Y. Chen, X. J. Liang, N. Zhang, Z. F. Chai, and Y. L. Zhao, Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives, ACS Nano, 2010, 4(5): 2773Google Scholar
  80. 80.
    D. Yang, Y. L. Zhao, H. Guo, Y. N. Li, P. Tewary, G. M. Xing, W. Hou, J. J. Oppenheim, and N. Zhang, [Gd@C(82)(OH)(22)](n) nanoparticles induce dendritic cell maturation and activate Th1 immune responses, ACS Nano, 2010, 4(2): 1178Google Scholar
  81. 81.
    H. Meng, G. M. Xing, E. Blanco, Y. Song, L. Zhao, B. Y. Sun, X. Li, P. C. Wang, A. Korotcov, W. Li, X. J. Liang, and C. Y. Yuan, H. Chen, F. Zhao, Z. Chen, T. Sun, Z. F. Chai, M. Ferrari, and Y. L. Zhao, Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells, Nanomedicine: Nanotechnology, Biology and Medicine, 2012, 8(2): 136Google Scholar
  82. 82.
    M. J. Bissell and D. Radisky, Putting tumours in context, Nat. Rev. Cancer, 2001, 1(1): 46Google Scholar
  83. 83.
    R. Duncan, Polymer conjugates as anticancer nanomedicines, Nat. Rev. Cancer, 2006, 6(9): 688Google Scholar
  84. 84.
    N. Tang, G. Du, N. Wang, C. Liu, H. Hang, and W. Liang, Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin, J. Natl. Cancer Inst., 2007, 99(13): 1004Google Scholar
  85. 85.
    X. Lu, F. Zhang, L. Qin, F. Xiao, and W. Liang, Polymeric micelles as a drug delivery system enhance cytotoxicity of vinorelbine through more intercellular accumulation, Drug Deliv., 2010, 17(4): 255Google Scholar
  86. 86.
    Y. Wang, R. Wang, X. Lu, W. Lu, C. Zhang, and W. Liang, Pegylated phospholipids-based self-assembly with water-soluble drugs, Pharm. Res., 2010, 27(2): 361Google Scholar
  87. 87.
    J. Wang, Y. Wang, and W. Liang, Delivery of drugs to cell membranes by encapsulation in PEG-PE micelles, J. Control. Release, 2012, 160(3): 637Google Scholar
  88. 88.
    J. Wang, H. Qu, L. Jin, W. Zeng, L. Qin, F. Zhang, X. Wei, W. Lu, C. Zhang, and W. Liang, Pegylated phosphotidylethanolamine inhibiting P-glycoprotein expression and enhancing retention of doxorubicin in MCF7/ADR cells, J. Pharm. Sci., 2011, 100(6): 2267Google Scholar
  89. 89.
    T. F. Liu, D. Fu, S. Gao, Y. Z. Zhang, H. L. Sun, G. Su, and Y. J. Liu, An azide-bridged homospin single-chain magnet: [Co(2,2′-bithiazoline)(N3)2]n, J. Am. Chem. Soc., 2003, 125(46): 13976Google Scholar
  90. 90.
    H. B. Xu, B. W. Wang, F. Pan, Z. M. Wang, and S. Gao, Stringing oxo-centered trinuclear [MnIII3O] units into single-chain magnets with formate or azide linkers, Angew. Chem. Int. Ed. Engl., 2007, 46(39): 7388Google Scholar
  91. 91.
    M. Ding, B. Wang, Z. Wang, J. Zhang, O. Fuhr, D. Fenske, and S. Gao, Constructing single-chain magnets by supramolecular — stacking and spin canting: A case study on manganese (III) corroles, Chemistry, 2012, 18(3): 915Google Scholar
  92. 92.
    B. Q. Ma, S. Gao, G. Su, and G. X. Xu, Cyano-bridged 4f-3d coordination polymers with a unique two-dimensional topological architecture and unusual magnetic behavior, Angew. Chem. Int. Ed. Engl., 2001, 40(2): 434Google Scholar
  93. 93.
    S. Gao, G. Su, T. Yi, and B. Q. Ma, Observation of an unusual field-dependent slow magnetic relaxation and two distinct transitions in a family of rare-earth-transition-metal complexes, Phys. Rev. B, 2001, 63(5): 054431ADSGoogle Scholar
  94. 94.
    S. D. Jiang, B. W. Wang, G. Su, Z. M. Wang, and S. Gao, A mononuclear dysprosium complex featuring singlemolecule-magnet behavior, Angew. Chem. Int. Ed. Engl., 2010, 49(41): 7448Google Scholar
  95. 95.
    S. D. Jiang, B. W. Wang, H. L. Sun, Z. M. Wang, and S. Gao, An organometallic single-ion magnet, J. Am. Chem. Soc., 2011, 133(13): 4730Google Scholar
  96. 96.
    G. C. Xu, W. Zhang, X. M. Ma, Y. H. Chen, L. Zhang, H. L. Cai, Z. M. Wang, R. G. Xiong, and S. Gao, Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3], J. Am. Chem. Soc., 2011, 133(38): 14948Google Scholar
  97. 97.
    F. Zhao, M. Yuan, W. Zhang, and S. Gao, Monodisperse lanthanide oxysulfide nanocrystals, J. Am. Chem. Soc., 2006, 128(36): 11758Google Scholar
  98. 98.
    F. Zhao, H. L. Sun, G. Su, and S. Gao, Synthesis and size-dependent magnetic properties of monodisperse EuS nanocrystals, Small, 2006, 2(2): 244Google Scholar
  99. 99.
    Y. G. Yao, Q. W. Li, J. Zhang, R. Liu, L. Y. Jiao, Y. T. Zhu, and Z. F. Liu, Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions, Nat. Mater., 2007, 6(4): 283ADSzbMATHGoogle Scholar
  100. 100.
    G. Hong, B. Zhang, B. H. Peng, J. Zhang, W. M. Choi, J. Y. Choi, J. M. Kim, and Z. F. Liu, Direct growth of semiconducting single-walled carbon nanotube array, J. Am. Chem. Soc., 2009, 131(41): 14642Google Scholar
  101. 101.
    Y. G. Yao, C. Q. Feng, J. Zhang, and Z. F. Liu,“Cloning” of single-walled carbon nanotubes via open-end growth mechanism, Nano Lett., 2009, 9(4): 1673ADSGoogle Scholar
  102. 102.
    X. Yu, J. Zhang, W. Choi, J. Y. Choi, J. M. Kim, L. Gan, and Z. Liu, Cap formation engineering: from opened C60 to single-walled carbon nanotubes, Nano Lett., 2010, 10(9): 3343ADSGoogle Scholar
  103. 103.
    N. Liu, L. Fu, B. Y. Dai, K. Yan, X. Liu, R. Q. Zhao, Y. F. Zhang, and Z. F. Liu, Universal segregation growth approach to wafer-size graphene from non-noble metals, Nano Lett., 2010, 11(1): 297ADSGoogle Scholar
  104. 104.
    C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, and Z. F. Liu, Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources, Adv. Mater., 2011, 23(8): 1020Google Scholar
  105. 105.
    B. Dai, L. Fu, Z. Zou, M. Wang, H. Xu, S. Wang, and Z. Liu, Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene, Nat. Commun., 2011, 2: 522Google Scholar
  106. 106.
    W. H. Dang, H. L. Peng, H. Li, P. Wang, and Z. F. Liu, Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene, Nano Lett., 2010, 10(8): 2870ADSGoogle Scholar
  107. 107.
    K. Yan, H. L. Peng, Y. Zhou, H. Li, and Z. F. Liu, Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition, Nano Lett., 2011, 11(3): 1106ADSGoogle Scholar
  108. 108.
    K. Yan, D. Wu, H. Peng, L. Jin, Q. Fu, X. Bao, and Z. Liu, Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation, Nat. Commun., 2012, 3: 1280Google Scholar
  109. 109.
    Z. H. Pan, N. Liu, L. Fu, and Z. F. Liu, Wrinkle engineering: A new approach to massive graphene nanoribbon arrays, J. Am. Chem. Soc., 2011, 133(44): 17578Google Scholar
  110. 110.
    Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001), Adv. Mater., 2009, 21(27): 2777Google Scholar
  111. 111.
    J. H. Mao, L. Huang, Y. Pan, M. Gao, J. F. He, H. T. Zhou, H. M. Guo, Y. Tian, Q. Zou, L. Z. Zhang, H. G. Zhang, Y. L. Wang, S. X. Du, X. J. Zhou, A. H. C. Neto, and H. J. Gao, Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001), Appl. Phys. Lett., 2012, 100(9): 093101ADSGoogle Scholar
  112. 112.
    Z. W. Shi, R. Yang, L. C. Zhang, Y. Wang, D. H. Liu, D. X. Shi, E. G. Wang, and G. Y. Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater., 2011, 23(27): 3061Google Scholar
  113. 113.
    D. C. Geng, B. Wu, Y. L. Guo, L. P. Huang, Y. Z. Xue, J. Y. Chen, G. Yu, L. Jiang, W. P. Hu, and Y. Q. Liu, Uniform hexagonal graphene flakes and films grown on liquid copper surface, Proc. Natl. Acad. Sci. USA, 2012, 109(21): 7992ADSGoogle Scholar
  114. 114.
    L. B. Gao, W. C. Ren, H. L. Xu, L. Jin, Z. X. Wang, T. Ma, L. P. Ma, Z. Y. Zhang, Q. Fu, L. M. Peng, X. H. Bao, and H. M. Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nat. Commun., 2012, 3: 699Google Scholar
  115. 115.
    Z. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei, and H. M. Cheng, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nat. Mater., 2011, 10(6): 424ADSGoogle Scholar
  116. 116.
    N. Li, Z. P. Chen, W. C. Ren, F. Li, and H. M. Cheng, Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates, Proc. Natl. Acad. Sci. USA, 2012, 109(43): 17360ADSGoogle Scholar
  117. 117.
    Y. J. Wei, J. T. Wu, H. Q. Yin, X. H. Shi, R. G. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene, Nat. Mater., 2012, 11(9): 759ADSGoogle Scholar
  118. 118.
    P. H. Tan, W. P. Han, W. J. Zhao, Z. H. Wu, K. Chang, H. Wang, Y. F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, and A. C. Ferrari, The shear mode of multilayer graphene, Nat. Mater., 2012, 11(4): 294ADSGoogle Scholar
  119. 119.
    W. G. Xu, X. Ling, J. Q. Xiao, M. S. Dresselhaus, J. Kong, H. X. Xu, Z. F. Liu, and J. Zhang, Surface enhanced Raman spectroscopy on a flat graphene surface, Proc. Natl. Acad. Sci. USA, 2012, 109(24): 9281Google Scholar
  120. 120.
    S. S. Chen, Q. Z. Wu, C. Mishra, J. Y. Kang, H. J. Zhang, K. Cho, W. W. Cai, A. A. Balandin, and R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater., 2012, 11(3): 203ADSGoogle Scholar
  121. 121.
    Z. Xu and C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres, Nat. Commun., 2011, 2: 571ADSGoogle Scholar
  122. 122.
    Y. X. Xu, H. Bai, G. W. Lu, C. Li, and G. Q. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, J. Am. Chem. Soc., 2008, 130(18): 5856Google Scholar
  123. 123.
    Y. Z. Tan, S. Y. Xie, R. B. Huang, and L. S. Zheng, The stabilization of fused-pentagon fullerene molecules, Nat. Chem., 2009, 1(6): 450Google Scholar
  124. 124.
    S. Y. Xie, F. Gao, X. Lu, R. B. Huang, C. R. Wang, X. Zhang, M. L. Liu, S. L. Deng, and L. S. Zheng, Capturing the labile fullerene[50] as C50Cl10, Science, 2004, 304(5671): 699Google Scholar
  125. 125.
    X. Lu, Z. Chen, W. Thiel, Pv. Schleyer, R. B. Huang, and L. S. Zheng, Properties of fullerene[50] and D5h decachlorofullerene[50]: A computational study, J. Am. Chem. Soc., 2004, 126(45): 14871Google Scholar
  126. 126.
    X. Han, S. J. Zhou, Y. Z. Tan, X. Wu, F. Gao, Z. J. Liao, R. B. Huang, Y. Q. Feng, X. Lu, S. Y. Xie, and L. S. Zheng, Crystal structures of saturn-like C50Cl10 and pineapple-shaped C64Cl4: geometric implications of doubleand triple-pentagon-fused chlorofullerenes, Angew. Chem. Int. Ed., 2008, 47(29): 5340Google Scholar
  127. 127.
    Y. Z. Tan, Z. J. Liao, Z. Z. Qian, R. T. Chen, X. Wu, H. Liang, X. Han, F. Zhu, S. J. Zhou, Z. Zheng, X. Lu, S. Y. Xie, R. B. Huang, and L. S. Zheng, Two I(h)-symmetry-breaking C60 isomers stabilized by chlorination, Nat. Mater., 2008, 7(10): 790ADSGoogle Scholar
  128. 128.
    Y. Z. Tan, T. Zhou, J. Bao, G. J. Shan, S. Y. Xie, R. B. Huang, and L. S. Zheng, C72Cl4: A pristine fullerene with favorable pentagon-adjacent structure, J. Am. Chem. Soc., 2010, 132(48): 17102Google Scholar
  129. 129.
    Y. Z. Tan, J. Li, F. Zhu, X. Han, W. S. Jiang, R. B. Huang, Z. Zheng, Z. Z. Qian, R. T. Chen, Z. J. Liao, S. Y. Xie, X. Lu, and L. S. Zheng, Chlorofullerenes featuring triple sequentially fused pentagons, Nat. Chem., 2010, 2(4): 269Google Scholar
  130. 130.
    Y. Z. Tan, R. T. Chen, Z. J. Liao, J. Li, F. Zhu, X. Lu, S. Y. Xie, J. Li, R. B. Huang, and L. S. Zheng, Carbon arc production of heptagon-containing fullerene[68], Nat. Commun., 2011, 2: 420Google Scholar
  131. 131.
    X. W. Liu, D. S. Wang, and Y. D. Li, Synthesis and catalytic properties of bimetallic nanomaterials with various architectures, Nano Today, 2012, 7(5): 448Google Scholar
  132. 132.
    R. Si, Y. W. Zhang, L. P. You, and C. H. Yan, Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks, Angew. Chem. Int. Ed. Engl., 2005, 44(21): 3256Google Scholar
  133. 133.
    W. D. Shi, J. B. Yu, H. S. Wang, and H. J. Zhang, Hydrothermal synthesis of single-crystalline antimony telluride nanobelts, J. Am. Chem. Soc., 2006, 128(51): 16490Google Scholar
  134. 134.
    X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, A general strategy for nanocrystal synthesis, Nature, 2005, 437(7055): 121ADSGoogle Scholar
  135. 135.
    X. Wang, Q. Peng, and Y. D. Li, Interface-mediated growth of monodispersed nanostructures, Acc. Chem. Res., 2007, 40(8): 635Google Scholar
  136. 136.
    D. S. Wang and Y. D. Li, One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process, J. Am. Chem. Soc., 2010, 132(18): 6280Google Scholar
  137. 137.
    D. S. Wang, Q. Peng, and Y. D. Li, Nanocrystalline intermetallics and alloys, Nano Res., 2010, 3(8): 574Google Scholar
  138. 138.
    D. S. Wang and Y. D. Li, Bimetallic nanocrystals: Liquidphase synthesis and catalytic applications, Adv. Mater., 2011, 23(9): 1044Google Scholar
  139. 139.
    D. S. Wang, P. Zhao, and Y. D. Li, General preparation for Pt-based alloy nanoporous nanoparticles as potential nanocatalysts, Scientific Reports, 2011, 1: 37ADSGoogle Scholar
  140. 140.
    K. B. Zhou, X. Wang, X. M. Sun, Q. Peng, and Y. D. Li, Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes, J. Catal., 2005, 229(1): 206Google Scholar
  141. 141.
    X. W. Liu, K. B. Zhou, L. Wang, B. Y. Wang, and Y. D. Li, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods, J. Am. Chem. Soc., 2009, 131(9): 3140Google Scholar
  142. 142.
    C. Chen, C. Y. Nan, D. S. Wang, Q. Su, H. H. Duan, X. W. Liu, L. S. Zhang, D. R. Chu, W. G. Song, Q. Peng, and Y. D. Li, Mesoporous multicomponent nanocomposite colloidal spheres: ideal high-temperature stable model catalysts, Angew. Chem. Int. Ed. Engl., 2011, 50(16): 3725Google Scholar
  143. 143.
    Y. E. Wu, S. F. Cai, D. S. Wang, W. He, and Y. D. Li, Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions, J. Am. Chem. Soc., 2012, 134(21): 8975Google Scholar
  144. 144.
    Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer, and N. A. Kotov, Selfassembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles, Nat. Nanotechnol., 2011, 6(9): 580ADSGoogle Scholar
  145. 145.
    J. W. Chen and Y. Cao, Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices, Acc. Chem. Res., 2009, 42(11): 1709Google Scholar
  146. 146.
    L. J. Huo and J. H. Hou, Benzo[1,2-b:4,5-b′]dithiophenebased conjugated polymers: band gap and energy level control and their application in polymer solar cells, Polym. Chem., 2011, 2(11): 2453Google Scholar
  147. 147.
    Y. F. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption, Acc. Chem. Res., 2012, 45(5): 723Google Scholar
  148. 148.
    H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photon., 2009, 3(11): 649ADSGoogle Scholar
  149. 149.
    Z. C. He, C. M. Zhong, C. M. Su, M. Xu, H. B. Wu, and Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photon., 2012, 6(9): 591ADSGoogle Scholar
  150. 150.
    L. J. Huo, S. Q. Zhang, X. Guo, F. Xu, Y. F. Li, and J. H. Hou, Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers, Angew. Chem. Int. Ed. Engl., 2011, 50(41): 9697Google Scholar
  151. 151.
    X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, and Y. Li, High efficiency polymer solar cells based on poly (3-hexylthiophene)/indene-C70 bisadduct with solvent additive, Energy Environ. Sci., 2012, 5(7): 7943Google Scholar
  152. 152.
    Y. J. He, H. Y. Chen, J. H. Hou, and Y. F. Li, Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells, J. Am. Chem. Soc., 2010, 132(4): 1377Google Scholar
  153. 153.
    Z. C. He, C. Zhang, X. F. Xu, L. J. Zhang, L. Huang, J. W. Chen, H. B. Wu, and Y. Cao, Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor, Adv. Mater., 2011, 23(27): 3086Google Scholar
  154. 154.
    Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, and P. Wang, Engineering organic sensitizers for iodine-free dyesensitized solar cells: red-shifted current response concomitant with attenuated charge recombination, J. Am. Chem. Soc., 2011, 133(30): 11442Google Scholar
  155. 155.
    Z. Dong, X. Lai, J. E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, and L. Jiang, Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency, Adv. Mater., 2012, 24(8): 1046Google Scholar
  156. 156.
    J. Zhang, J. Yu, M. Jaroniec, and J. R. Gong, Noble metalfree reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance, Nano Lett., 2012, 12(9): 4584ADSGoogle Scholar
  157. 157.
    Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan, and J. R. Gong, Highly efficient visible-lightdriven photocatalytic hydrogen production of CdS-clusterdecorated graphene nanosheets, J. Am. Chem. Soc., 2011, 133(28): 10878Google Scholar
  158. 158.
    S. Xin, Y. G. Guo, and L. J. Wan, Nanocarbon networks for advanced rechargeable lithium batteries, Acc. Chem. Res., 2012, 45(10): 1759Google Scholar
  159. 159.
    Z. L. Gong, Y. X. Li, G. N. He, J. Li, and Y. Yang, Nanostructured Li[sub 2]FeSiO[sub 4] electrode material synthesized through hydrothermal-assisted sol-gel process, Electrochem. Solid-State Lett., 2008, 11(5): A60Google Scholar
  160. 160.
    F. F. Cao, Y. G. Guo, S. F. Zheng, X. L. Wu, L. Y. Jiang, R. R. Bi, L. J. Wan, and J. Maier, Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem, Chem. Mater., 2010, 22(5): 1908Google Scholar
  161. 161.
    L. Huo, J. Hou, S. Zhang, H. Chen, and Y. Yang, A Polybenzo[1,2-b:4,5-b′]dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells, Angew. Chem. Int. Ed., 2010, 49(8): 1500Google Scholar
  162. 162.
    D. J. Xue, S. Xin, Y. Yan, K. C. Jiang, Y. X. Yin, Y. G. Guo, and L. J. Wan, Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks, J. Am. Chem. Soc., 2012, 134(5): 2512Google Scholar
  163. 163.
    Q. Zhang, Q. F. Dong, M. S. Zheng, and Z. W. Tian, Electrochemical energy storage device for electric vehicles, J. Electrochem. Soc., 2011, 158(5): A443Google Scholar
  164. 164.
    L. Gu, C. Zhu, H. Li, Y. Yu, C. Li, S. Tsukimoto, J. Maier, and Y. Ikuhara, Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution, J. Am. Chem. Soc., 2011, 133(13): 4661Google Scholar
  165. 165.
    D. W. Wang, F. Li, M. Liu, G. Q. Lu, and H. M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew. Chem. Int. Ed. Engl., 2008, 47(2): 373Google Scholar
  166. 166.
    X. F. Xie and L. Gao, Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method, Carbon, 2007, 45(12): 2365Google Scholar
  167. 167.
    J. J. Xu, K. Wang, S. Z. Zu, B. H. Han, and Z. X. Wei, Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage, ACS Nano, 2010, 4(9): 5019Google Scholar
  168. 168.
    C. Chen, W. Ma, and J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev., 2010, 39(11): 4206Google Scholar
  169. 169.
    M. Zhang, Q. Wang, C. Chen, L. Zang, W. Ma, and J. Zhao, Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: Oxygen isotope studies, Angew. Chem. Int. Ed., 2009, 48(33): 6081Google Scholar
  170. 170.
    C. Y. Cao, J. Qu, W. S. Yan, J. F. Zhu, Z. Y. Wu, and W. G. Song, Low-cost synthesis of flowerlike -Fe2O3 nanostructures for heavy metal ion removal: Adsorption property and mechanism, Langmuir, 2012, 28(9): 4573Google Scholar
  171. 171.
    C. Y. Cao, P. Li, J. Qu, Z. F. Dou, W. S. Yan, J. F. Zhu, Z. Y. Wu, and W. G. Song, High adsorption capacity and the key role of carbonate groups for heavy metal ion removal by basic aluminum carbonate porous nanospheres, J. Mater. Chem., 2012, 22(37): 19898Google Scholar
  172. 172.
    C. Y. Cao, J. Qu, F. Wei, H. Liu, and W. G. Song, Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions, ACS Appl. Mater. Interfaces, 2012, 4(8): 4283Google Scholar
  173. 173.
    W. Liu, F. Huang, Y. Liao, J. Zhang, G. Ren, Z. Zhuang, J. Zhen, Z. Lin, and C. Wang, Treatment of CrVI-containing Mg(OH)2 nanowaste, Angew. Chem. Int. Ed. Engl., 2008, 47(30): 5619Google Scholar
  174. 174.
    W. Liu, F. Huang, Y. Wang, T. Zou, J. Zheng, and Z. Lin, Recycling MgOH2 nanoadsorbent during treating the low concentration of CrVI, Environ. Sci. Technol., 2011, 45(5): 1955ADSGoogle Scholar
  175. 175.
    Q. Cao, F. Huang, Z. Zhuang, and Z. Lin, A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water, Nanoscale, 2012, 4(7): 2423ADSGoogle Scholar
  176. 176.
    S. Guo and E. Wang, Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors, Nano Today, 2011, 6(3): 240Google Scholar
  177. 177.
    S. Guo and S. Dong, Biomolecule-nanoparticle hybrids for electrochemical biosensors, Trends Analyt. Chem., 2009, 28(1): 96MathSciNetGoogle Scholar
  178. 178.
    D. Wen, S. Guo, J. Zhai, L. Deng, W. Ren, and S. Dong, Pt Nanoparticles Supported on TiO2 Colloidal Spheres with Nanoporous Surface: Preparation and Use as an Enhancing Material for Biosensing Applications, J. Phys. Chem. C, 2009, 113(30): 13023Google Scholar
  179. 179.
    S. Guo and S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev., 2011, 40(5): 2644Google Scholar
  180. 180.
    M. Zhou, Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem., 2009, 81(14): 5603Google Scholar
  181. 181.
    X. Wu, Y. Hu, J. Jin, N. Zhou, P. Wu, H. Zhang, and C. Cai, Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), Anal. Chem., 2010, 82(9): 3588Google Scholar
  182. 182.
    K. Qian, J. Wan, L. Qiao, X. Huang, J. Tang, Y. Wang, J. Kong, P. Yang, C. Yu, and B. Liu, Macroporous materials as novel catalysts for efficient and controllable proteolysis, Anal. Chem., 2009, 81(14): 5749Google Scholar
  183. 183.
    Y. Zhang, X. Wang, W. Shan, B. Wu, H. Fan, X. Yu, Y. Tang, and P. Yang, Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis, Angew. Chem. Int. Ed. Engl., 2005, 44(4): 615Google Scholar
  184. 184.
    H. M. Xiong, X. Y. Guan, L. H. Jin, W. W. Shen, H. J. Lu, and Y. Y. Xia, Surfactant-free synthesis of SnO2@PMMA and TiO2@PMMA core-shell nanobeads designed for peptide/protein enrichment and MALDI-TOF MS analysis, Angew. Chem. Int. Ed. Engl., 2008, 47(22): 4204Google Scholar
  185. 185.
    R. Tian, H. Zhang, M. Ye, X. Jiang, L. Hu, X. Li, X. Bao, and H. Zou, Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis, Angew. Chem. Int. Ed. Engl., 2007, 46(6): 962Google Scholar
  186. 186.
    S. Song, Y. Qin, Y. He, Q. Huang, C. Fan, and H. Y. Chen, Functional nanoprobes for ultrasensitive detection of biomolecules, Chem. Soc. Rev., 2010, 39(11): 4234Google Scholar
  187. 187.
    Y. M. Long, Q. L. Zhao, Z. L. Zhang, Z. Q. Tian, and D. W. Pang, Electrochemical methods-important means for fabrication of fluorescent nanoparticles, Analyst, 2012, 137(4): 805ADSGoogle Scholar
  188. 188.
    D. Liu, W. Chen, K. Sun, K. Deng, W. Zhang, Z. Wang, and X. Jiang, Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles, Angew. Chem. Int. Ed. Engl., 2011, 50(18): 4103Google Scholar
  189. 189.
    W. Qu, Y. Liu, D. Liu, Z. Wang, and X. Jiang, Coppermediated amplification allows readout of immunoassays by the naked eye, Angew. Chem. Int. Ed. Engl., 2011, 50(15): 3442Google Scholar
  190. 190.
    M. T. Zhu, G. J. Nie, H. Meng, T. Xia, A. Nel, and Y. L. Zhao, Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate, Acc. Chem. Res., 2013, 46(3): 622Google Scholar
  191. 191.
    B. Wang, X. He, Z. Y. Zhang, Y. L. Zhao, and W. Y. Feng, Metabolism of nanomaterials in vivo: Blood circulation and organ clearance, Acc. Chem. Res., 2013, 46(3): 761Google Scholar
  192. 192.
    Y. Liu, Y. L. Zhao, B. Y. Sun, and C. Y. Chen, Understanding the toxicity of carbon nanotubes, Acc. Chem. Res., 2013, 46(3): 702Google Scholar
  193. 193.
    Y. L. Zhao, G. M. Xing, and Z. F. Chai, Nanotoxicology: Are carbon nanotubes safe? Nat. Nanotech., 2008, 3: 191ADSGoogle Scholar
  194. 194.
    H. Yang, C. J. Sun, Z. L. Fan, X. Tian, L. Yan, L. B. Du, Y. Liu, C. Y. Chen, X. J. Liang, G. J. Anderson, J. A. Keelan, Y. L. Zhao, and G. J. Nie, Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy, Scientific Reports, 2012, 2(847): 1Google Scholar
  195. 195.
    C. C. Ge, J. F. Du, L. N. Zhao, L. Wang, Y. Liu, D. Li, Y. Yang, R. H. Zhou, Y. L. Zhao, Z. F. Chai, and C. Y. Chen, Binding of blood proteins to carbon nanotubes reduces cytotoxicity, Proc. Natl. Acad. Sci. USA, 2011, 108: 16968ADSGoogle Scholar
  196. 196.
    S. G. Kang, G. Q. Zhou, P. Yang, Y. Liu, B. Y. Sun, T. Huynh, H. Meng, L. N. Zhao, G. M. Xing, C. Y. Chen, Y. L. Zhao, and R. H. Zhou, Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine, Proc. Natl. Acad. Sci. USA, 2012, 109(38): 15431ADSGoogle Scholar
  197. 197.
    Y. Y. Li, Y. L. Zhou, H. Y. Wang, S. Perrett, Y. L. Zhao, Z. Y. Tang, and G. J. Nie, Chirality of glutathione surface coating affects the cytotoxicity of quantum dots, Angew. Chem. Int. Ed., 2011, 50: 5860Google Scholar
  198. 198.
    C. Sun, H. Yang, Y. Yuan, X. Tian, L. Wang, Y. Guo, L. Xu, J. Lei, N. Gao, G. J. Anderson, X. J. Liang, C. Chen, Y. Zhao, and G. Nie, Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging, J. Am. Chem. Soc., 2011, 133(22): 8617Google Scholar
  199. 199.
    C. C. Ge, F. Lao, W. Li, Y. Li, C. C. Chen, Y. Qiu, X. Mao, B. Li, Z. F. Chai, and Y. L. Zhao, Quantitative analysis of metal impurities in carbon nanotubes: Efficacy of different pretreatment protocols for ICPMS spectroscopy, Anal. Chem., 2008, 80(24): 9426Google Scholar
  200. 200.
    Y. Qu, W. Li, Y. Zhou, X. Liu, L. Zhang, L. Wang, Y. F. Li, A. Iida, Z. Tang, Y. Zhao, Z. Chai, and C. Chen, Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism, Nano Lett., 2011, 11(8): 3174Google Scholar
  201. 201.
    X. He, Z. Y. Zhang, J. S. Liu, Y. H. Ma, P. Zhang, Y. Y. Li, Z. Q. Wu, Y. L. Zhao, and Z. F. Chai, Quantifying the biodistribution of nanoparticles, Nat. Nanotechnol., 2011, 6(12): 755ADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yu-Liang Zhao
    • 1
    • 4
  • Yan-Lin Song
    • 2
  • Wei-Guo Song
    • 2
  • Wei Liang
    • 5
  • Xing-Yu Jiang
    • 1
  • Zhi-Yong Tang
    • 1
  • Hong-Xing Xu
    • 3
  • Zhi-Xiang Wei
    • 1
  • Yun-Qi Liu
    • 2
  • Ming-Hua Liu
    • 2
  • Lei Jiang
    • 1
    • 2
    • 6
  • Xin-He Bao
    • 7
  • Li-Jun Wan
    • 2
  • Chun-Li Bai
    • 8
    Email author
  1. 1.National Center for Nanoscience and NanotechnologyBeijingChina
  2. 2.Institute of ChemistryChinese Academy of SciencesBeijingChina
  3. 3.Institute of PhysicsChinese Academy of SciencesBeijingChina
  4. 4.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  5. 5.Institute of BiophysicsChinese Academy of SciencesBeijingChina
  6. 6.School of Chemistry and EnvironmentBeijing University of Aeronautics and AstronauticsBeijingChina
  7. 7.Shenyang BranchChinese Academy of SciencesShenyangChina
  8. 8.Chinese Academy of SciencesBeijingChina

Personalised recommendations