Abstract
In reviewing some recent work in metamaterials, we highlight two exciting new frontiers just emerging in this field — metamaterials made by new electronic materials (particularly graphene) and inhomogeneous metasurfaces to control light wave-fronts.
This is a preview of subscription content, access via your institution.
References
V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ɛ and µ, Sov.Phys. Usp., 1968, 10(4): 509
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans.Microw. Theory Tech., 1999, 47: 2075
R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science, 2001, 292(5514): 77
J. B. Pendry, Negative refraction makes a perfect lens, Phys.Rev. Lett., 2000, 85(18): 3966
N. Fang, H. Lee, C. Sun, and X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science, 2005, 308(5721): 534
P. Chaturvedi and N. X. Fang, Sub-diffraction-limited far-field imaging in infrared, Front. Phys. China, 2010, 5(3): 324 7.
J. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Phys. Rev. Lett., 2007, 99(6): 063908
J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, Optical metamaterial for polarization control, Phys. Rev. A, 2009, 80(2): 023807
J. M. Hao, M. Qiu, and L. Zhou, Manipulate light polarizations with metamaterials: From microwave to visible, Front. Phys. China, 2010, 5(3): 291
W. Sun, Q. He, J. Hao, and L. Zhou, A transparent metamaterial to manipulate electromagnetic wave polarizations, Opt. Lett., 2011, 36(6): 927
C. M. Soukoulis and M. Wegener, Optical metamaterials — More bulky and less lossy, Science, 2010, 330(6011): 1633
U. Leonhardt, Optical conformal mapping, Science, 2006, 312(5781): 1777
J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science, 2006, 312(5781): 1780
H. Y. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater., 2010, 9(5): 387
Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett., 2009, 102(25): 253902
Y. Lai, J. Ng, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Illusion optics, Front. Phys. China, 2010, 5(3): 308
Y. Shen, K. Ding, W. J. Sun, and L. Zhou, A chirality switching device designed with transformation optics, Opt. Express, 2010, 18(20): 21419
D. Bao, E. Kallos, W. X. Tang, C. Argyropoulos, Y. Hao, and T. J. Cui, A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders, Front. Phys. China, 2010, 5(3): 319
Z. L. Mei, J. Bai, and T. J. Cui, Experimental verification of a broadband planar focusing antenna based on transformation optics, New J. Phys., 2011, 13(6): 063028
Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, A half Maxwell fish-eye lens antenna based on gradient-index metamaterials, IEEE Trans. Antenn. Propag., 2012, 60(1): 398
Z. L. Mei, J. Bai, and T. J. Cui, Experimental verification of a broadband planar focusing antenna based on transformation optics, New J. Phys., 2011, 13(6): 063028
C. Joseph, Quantum Theory of the Solid State, New York: Academic Press, 1976
A. Boltasseva and H. Atwater, Low-loss plasmonic metamaterials, Science, 2011, 331(6015): 290
N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science, 2011, 334(6054): 333
S. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater., 2012, 11(5): 426
K. Ding, Y. Shen, J. Ng, and L. Zhou, Europhys. Lett., 2013 (submitted)
H. Yoon, K. Y. M. Yeung, V. Umansky, and D. Ham, A Newtonian approach to extraordinarily strong negative refraction, Nature, 2012, 488(7409): 65
Y. Sun, B. Edwards, A. Alù, and N. Engheta, Experimental realization of optical lumped nanocircuits at infrared wavelengths, Nat. Mater., 2012, 11(3): 208
J. N. Chen, M. Badioli, P. Alonso-Gonzlez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. Garcia de Abajo, R. Hillenbrand, and F. Koppens, Optical nanoimaging of gate-tunable graphene plasmons, Nature, 2012, 487: 77
Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature, 2012, 487: 82
L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, and Y. Ron Shen, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol., 2011, 6(10): 630
A. Vakil and N. Engheta, Transformation optics using graphene, Science, 2011, 332(6035): 1291
A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, Fields radiated by a nanoemitter in a graphene sheet, Phys. Rev. B, 2011, 84(19): 195446
F. H. L. Koppens, D. E. Chang, and F. Javier Garcia de Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett., 2011, 11(8): 3370
X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Broadband light bending with plasmonic nanoantennas, Science, 2012, 335(6067): 427
M. A. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy, Proc. Natl. Acad. Sci. USA, 2012, 109(31): 12364
R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, Modeling nanoscale V-shaped antennas for the design of optical phased arrays, Phys. Rev. B, 2012, 85(15): 155457
S. L. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Y. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, High-efficiency broadband anomalous reflection by gradient meta-surfaces, Nano Lett., 2012, 12(12): 6223
X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, Flat metasurfaces to focus electromagnetic waves in reflection geometry, Opt. Lett., 2012, 37(23): 4940
X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, Dual-polarity plasmonic metalens for visible light, Nat. Commun., 2012, 3: 1198
A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, Broadband focusing flat mirrors based on plasmonic gradient metasurfaces, Nano Lett., http://dx.doi.org/10.1021/nl304761m
F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces, Nano Lett., 2012, 12(9): 4932
P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Ultra-thin plasmonic optical vortex plate based on phase discontinuities, Appl. Phys. Lett., 2012, 100(1): 013101
F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities, Nano Lett., 2012, 12(3): 1702
N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, A broadband, background-free quarter-wave plate based on plasmonic metasurfaces, Nano Lett., 2012, 12(12): 6328
L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, Dispersionless phase discontinuities for controlling light propagation, Nano Lett., 2012, 12(11): 5750
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ding, K., Xiao, SY. & Zhou, L. New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces. Front. Phys. 8, 386–393 (2013). https://doi.org/10.1007/s11467-013-0322-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11467-013-0322-z
Keywords
- metamaterial
- new electronic material
- graphene
- inhomogeneous metasurfaces
- wavefront control