Skip to main content
Log in

Cosmic ray energy spectrum from measurements of air showers

  • Review article
  • Frontiers of Physics
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

This review focuses on high-energy cosmic rays in the PeV energy range and above. Of particular interest is the knee of the spectrum around 3 PeV and the transition from cosmic rays of Galactic origin to particles from extra-galactic sources. Our goal is to establish a baseline spectrum from 1014 to 1020 eV by combining the results of many measurements at different energies. In combination with measurements of the nuclear composition of the primaries, the shape of the energy spectrum places constraints on the number and spectra of sources that may contribute to the observed spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. J. A. Simpson and M. Garcia-Muñoz, Space Sci. Rev., 1988, 46(3–4): 205

    ADS  Google Scholar 

  2. M. A. Malkov and L. O. C. Drury, Rep. Prog. Phys., 2001, 64(4): 421

    Article  ADS  Google Scholar 

  3. A. Obermeier, P. Boyle, J. Hörandel, and D. Müller, Astrophys. J., 2012, 752(1): 69

    Article  ADS  Google Scholar 

  4. M. Ackermann, et al. [Fermi Collaboration], Astrophys. J., 2012, 750: 3

    Article  ADS  Google Scholar 

  5. J. Holder, Astropart. Phys., 2012, 39–40: 61

    Article  Google Scholar 

  6. E. S. Seo, Astropart. Phys., 2012, 39–40: 76

    Article  Google Scholar 

  7. H. S. Ahn, et al. [CREAM Collaboration], Astrophys. J., 2009, 707: 593

    Article  ADS  Google Scholar 

  8. H. S. Ahn, et al. [CREAM Collaboration], Astrophys. J., 2010, 714: L89

    Article  ADS  Google Scholar 

  9. O. Adriani, et al. [Pamela Collaboration], Science, 2011, 332: 69

    Article  ADS  Google Scholar 

  10. K. Asakimori, T. H. Burnett, M. L. Cherry, K. Chevli, et al., Astrophys. J., 1998, 502(1): 278

    Article  ADS  Google Scholar 

  11. K. Asakimori, et al., Proc. 23rd Int. Cosmic Ray Conf., Calgary, 1993, 2: 25; and Proc. 22nd Int. Cosmic Ray Conf., Dublin, 1991, 2: 57, 97

    Google Scholar 

  12. A. D. Panov, et al. [ATIC Collaboration], Bull. Russ. Acad. Sci. Phys., 2009, 73: 564, arXiv: 1101.3246

    Article  Google Scholar 

  13. N. L. Grigorov, et al., Yad. Fiz., 1970, 11: 1058, and Proc. 12th Int. Cosmic Ray Conf., Hobart, 1971, 2: 206

    Google Scholar 

  14. B. Peters, Nuovo Cim., 1961, XXII(4): 800

    Article  Google Scholar 

  15. M. Nagano, T. Hara, Y. Hatano, N. Hayashida, S. Kawaguchi, K. Kamata, T. Kifune, and Y. Mizumoto, J. Phys. G, 1984, 10(9): 1295

    Article  ADS  Google Scholar 

  16. M. A. K. Glasmacher, et al., Astropart. Phys., 1999, 10(4): 291

    Article  ADS  Google Scholar 

  17. T. Antoni, et al. [KASCADE Collaboration], Astropart. Phys., 2005, 24: 1

    Article  ADS  Google Scholar 

  18. J. Abraham, et al. [The Pierre Auger Collaboration], Phys. Rev. Lett., 2008, 101(6): 061101

    Article  ADS  Google Scholar 

  19. R. Abbasi, et al. [IceCube Collaboration], NIMA, 2013, 700: 188

    Article  ADS  Google Scholar 

  20. M. A. Lawrence, R. J. O. Reid, and A. A. Watson, J. Phys. G, 1991, 17(5): 733

    Article  ADS  Google Scholar 

  21. F. Arqueros, et al., Astron. Astrophys., 2000, 359: 682

    ADS  Google Scholar 

  22. M. Amenomori, X. J. Bi, D. Chen, S. W. Cui, et al., Astrophys. J., 2008, 678(2): 1165

    Article  ADS  Google Scholar 

  23. S. F. Berezhnev, et al. [Tunka Collaboration], NIMA, 2012, A692: 98

    Article  ADS  Google Scholar 

  24. D. J. Bird, S. C. Corbato, H. Y. Dai, B. R. Dawson, J. W. Elbert, B. L. Emerson, K. D. Green, M. A. Huang, D. B. Kieda, M. Luo, S. Ko, C. G. Larsen, E. C. Loh, M. H. Salamon, J. D. Smith, P. Sokolsky, P. Sommers, J. K. K. Tang, and S. B. Thomas, Astrophys. J., 1994, 424: 491

    Article  ADS  Google Scholar 

  25. K. H. Kampert and A. A. Watson, Eur. Phys. J. H, 2012, 37(3): 359

    Article  Google Scholar 

  26. K. H. Kampert and M. Unger, Astropart. Phys., 2012, 35(10): 660

    Article  ADS  Google Scholar 

  27. V. Berezinsky, A. Gazizov, and S. Grigorieva, Phys. Rev. D, 2006, 74(4): 043005

    Article  ADS  Google Scholar 

  28. A. V. Glushkov, et al. [Yakutsk Collaboration], JETP Lett., 2000, 71: 97

    Article  ADS  Google Scholar 

  29. R. U. Abbasi, et al. [HiRes Collaboration], Phys. Rev. Lett., 2008, 100: 101101, See also: R. U. Abbasi, T. Abu-Zayyad, M. Al-Seady, M. Allen, et al., Astropart. Phys., 2009, 32 (1): 53

    Article  ADS  Google Scholar 

  30. M. Nagano, M. Teshima, Y. Matsubara, H. Y. Dai, T. Hara, N. Hayashida, M. Honda, H. Ohoka, and S. Yoshida, J. Phys. G, 1992, 18(2): 423

    Article  ADS  Google Scholar 

  31. M. Takeda, et al. [The AGASA Collaboration], Astropart. Phys., 2003, 19: 447

    Article  MathSciNet  ADS  Google Scholar 

  32. R. Aloisio, V. Berezinsky, and A. Gazizov, Astropart. Phys., 2012, 39–40: 129

    Article  Google Scholar 

  33. P. Abreu, et al. [Auger Collaboration], in: Proc. 32nd Int. Cosmic Ray Conf., Beijing, China, arXiv: 1107.4809, 2011 (see Table at www.Auger.org)

    Google Scholar 

  34. T. Abu-Zayyad, et al. [Telescope Array Collaboration], arXiv: 1205.5067, 2012

  35. A. D. Erlykin and A. W. Wolfendale, J. Phys. G, 2001, 27(5): 1005

    Article  ADS  Google Scholar 

  36. T. K. Gaisser, Astropart. Phys., 2012, 35(12): 801

    Article  ADS  Google Scholar 

  37. A. P. Garyaka, R. M. Martirosov, S. V. Ter-Antonyan, A. D. Erlykin, N. M. Nikolskaya, Y. A. Gallant, L. W. Jones, and J. Procureur, J. Phys. G, 2008, 35(11): 115201

    Article  ADS  Google Scholar 

  38. W. D. Apel, et al. [KASCADE-Grande Collaboration], Astropart. Phys., 2012, 36: 183

    Article  ADS  Google Scholar 

  39. A. Calvez, A. Kusenko, and S. Nagataki, Phys. Rev. Lett., 2010, 105(9): 091101

    Article  ADS  Google Scholar 

  40. A. M. Hillas, J. Phys. G, 2005, 31(5): R95

    Article  ADS  Google Scholar 

  41. A. R. Bell, Mon. Not. R. Astron. Soc., 2004, 353(2): 550

    Article  ADS  Google Scholar 

  42. Y. Uchiyama, F. A. Aharonian, T. Tanaka, T. Takahashi, and Y. Maeda, Nature, 2007, 449: 576

    Article  ADS  Google Scholar 

  43. E. Amato and P. Blasi, Mon. Not. R. Astron. Soc., 2006, 371(3): 1251

    Article  ADS  Google Scholar 

  44. P. O. Lagage and C. J. Cesarsky, Astron. Astrophys., 1983, 125: 249

    ADS  MATH  Google Scholar 

  45. W. D. Apel, J. C. Arteaga-Velázquez, K. Bekk, M. Bertaina, et al., Phys. Rev. Lett., 2011, 107(17): 171104

    Article  ADS  Google Scholar 

  46. M. A. K. Glasmacher, M. A. Catanese, M. C. Chantell, C. E. Covault, J. W. Cronin, B. E. Fick, L. F. Fortson, J. W. Fowler, K. D. Green, D. B. Kieda, J. Matthews, B. J. Newport, D. F. Nitz, R. A. Ong, S. Oser, D. Sinclair, and J. C. van der Velde, Astropart. Phys., 1999, 12(1–2): 1

    Article  ADS  Google Scholar 

  47. R. Aloisio, V. Berezinsky, and A. Gazizov, Astropart. Phys., 2011, 34(8): 620

    Article  ADS  Google Scholar 

  48. K. Greisen, Phys. Rev. Lett., 1966, 16(17): 748

    Article  ADS  Google Scholar 

  49. G.T. Zatsepin and V. A. Kuz’min, JETP Lett., 1966, 4: 78

    ADS  Google Scholar 

  50. A. D. Erlykin and A. W. Wolfendale, Astropart. Phys., 2012, 35(7): 449

    Article  ADS  Google Scholar 

  51. V. Ptuskin, V. Zirakashvili, and E. S. Seo, arXiv: 1212.0381, 2012

  52. Q. Yuan, B. Zhang, and X. J. Bi, Phys. Rev. D, 2011, 84(4): 043002

    Article  ADS  Google Scholar 

  53. P. Blasi, E. Amato, and P. D. Serpico, Phys. Rev. Lett., 2012, 109(6): 061101

    Article  ADS  Google Scholar 

  54. R. Abbasi, et al. [IceCube Collaboration], Astropart. Phys., 2013, 42: 15

    Article  ADS  Google Scholar 

  55. T. Abu-Zayyad, et al. [HiRes-MIA], Astrophys. J., 2001, 557: 686, See also: T. Abu-Zayyad, et al. [HiRes Collaboration], Phys. Rev. Lett., 2003, 84 (19): 4276

    Article  ADS  Google Scholar 

  56. E. J. Ahn, R. Engel, T. K. Gaisser, P. Lipari, and T. Stanev, Phys. Rev. D, 2009, 80(9): 094003

    Article  ADS  Google Scholar 

  57. J. Abraham, P. Abreu, M. Aglietta, E. J. Ahn, et al., Phys. Rev. Lett., 2010, 104(9): 091101

    Article  ADS  Google Scholar 

  58. E. Waxman, Astrophys. J., 1995, 452(1): L1

    Article  MathSciNet  ADS  Google Scholar 

  59. D. Allard, Astropart. Phys., 2012, 39-40: 33

    Article  ADS  Google Scholar 

  60. T. H.-J. Mathes for the Auger Collaboration, Proc. 32nd ICRC (Beijing), paper 0761, 2011

    Google Scholar 

  61. F. Sanchez for the Auger Collaboration, Proc. 32nd ICRC (Beijing), paper 0742, 2011

    Google Scholar 

  62. The measured ratio of secondary/primary nuclei at low energy decreases like E 0.6 [3]. Such a strong energy dependence cannot continue to the knee region without producing unobserved anisotropy in the cosmic radiation at high energy.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Gaisser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaisser, T.K., Stanev, T. & Tilav, S. Cosmic ray energy spectrum from measurements of air showers. Front. Phys. 8, 748–758 (2013). https://doi.org/10.1007/s11467-013-0319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0319-7

Keywords

Navigation