Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion


Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

This is a preview of subscription content, access via your institution.


  1. 1.

    E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, Annu. Rev. Mater. Res., 2011, 41(1): 269

    ADS  Article  Google Scholar 

  2. 2.

    A. I. Hochbaum and P. Yang, Chem. Rev., 2010, 110(1): 527

    Article  Google Scholar 

  3. 3.

    B.M. Kayes, H.A. Atwater, and N. S. Lewis, J. Appl. Phys., 2005, 97(11): 114302

    ADS  Article  Google Scholar 

  4. 4.

    L. Hu and G. Chen, Nano Lett., 2007, 7(11): 3249

    ADS  Article  Google Scholar 

  5. 5.

    E. Garnett and P. Yang, Nano Lett., 2010, 10(3): 1082

    ADS  Article  Google Scholar 

  6. 6.

    N. P. Dasgupta, S. Xu, H. J. Jung, A. Iancu, R. Fasching, R. Sinclair, and F. B. Prinz, Adv. Funct. Mater., 2012, 22(17): 3650

    Article  Google Scholar 

  7. 7.

    O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, Nano Lett., 2008, 8(9): 2638

    ADS  Article  Google Scholar 

  8. 8.

    L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett., 2007, 91(23): 233117

    ADS  Article  Google Scholar 

  9. 9.

    M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt. Res. Appl., 2012, 20(5): 606

    Article  Google Scholar 

  10. 10.

    L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett., 2005, 5(7): 1231

    ADS  Article  Google Scholar 

  11. 11.

    L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. Yang, Inorg. Chem., 2006, 45(19): 7535

    Article  Google Scholar 

  12. 12.

    M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater., 2005, 4(6): 455

    ADS  Article  Google Scholar 

  13. 13.

    A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, J. Phys. Chem. B, 2000, 104(5): 949

    Article  Google Scholar 

  14. 14.

    M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang, J. Phys. Chem. B, 2006, 110(45): 22652

    Article  Google Scholar 

  15. 15.

    L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, J. Phys. Chem. C, 2007, 111(50): 18451

    Article  Google Scholar 

  16. 16.

    B. D. Yuhas and P. D. Yang, J. Am. Chem. Soc., 2009, 131(10): 3756

    Article  Google Scholar 

  17. 17.

    M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater., 2010, 9(3): 239

    ADS  Google Scholar 

  18. 18.

    J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, Nano Lett., 2010, 10(6): 1979

    ADS  Article  Google Scholar 

  19. 19.

    J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Nano Lett., 2009, 9(1): 279

    ADS  Article  Google Scholar 

  20. 20.

    E. Yablonovitch and G. D. Cody, IEEE Trans. Electron. Dev., 1982, 29(2): 300

    ADS  Article  Google Scholar 

  21. 21.

    M. G. Mauk, J. Miner. Met. Mater. Soc., 2003, 55(5): 38

    Article  Google Scholar 

  22. 22.

    A. Boukai, P. Haney, A. Katzenmeyer, G. M. Gallatin, A. A. Talin, and P. Yang, Chem. Phys. Lett., 2011, 501(4–6): 153

    ADS  Article  Google Scholar 

  23. 23.

    B. Tian, T. J. Kempa, and C. M. Lieber, Chem. Soc. Rev., 2009, 38(1): 16

    Article  Google Scholar 

  24. 24.

    M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, Nano Lett., 2008, 8(2): 710

    ADS  Article  Google Scholar 

  25. 25.

    B. Z. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature, 2007, 449(7164): 885

    ADS  Article  Google Scholar 

  26. 26.

    S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. Jan Anton Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen, Nat. Mater., 2009, 8(10): 818

    ADS  Article  Google Scholar 

  27. 27.

    A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. M. Fréchet, and P. Yang, Nano Lett., 2010, 10(1): 334

    ADS  Article  Google Scholar 

  28. 28.

    J. A. Czaban, D. A. Thompson, and R. R. Lapierre, Nano Lett., 2009, 9(1): 148

    ADS  Article  Google Scholar 

  29. 29.

    J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, Nat. Nanotechnol., 2011, 6(9): 568

    ADS  Article  Google Scholar 

  30. 30.

    L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, Nano Lett., 2010, 10(2): 439

    ADS  Article  Google Scholar 

  31. 31.

    L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, Nat. Mater., 2009, 8(8): 643

    ADS  Article  Google Scholar 

  32. 32.

    V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett., 2008, 8(12): 4391

    ADS  Article  Google Scholar 

  33. 33.

    K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett., 2008, 93(12): 121904

    ADS  Article  Google Scholar 

  34. 34.

    H. A. Atwater and A. Polman, Nat. Mater., 2010, 9(3): 205

    ADS  Article  Google Scholar 

  35. 35.

    S. Brittman, H. Gao, E. C. Garnett, and P. Yang, Nano Lett., 2011, 11(12): 5189

    ADS  Article  Google Scholar 

  36. 36.

    N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. USA, 2006, 103(43): 15729

    ADS  Article  Google Scholar 

  37. 37.

    A. Listorti, J. Durrant, and J. Barber, Nat. Mater., 2009, 8(12): 929

    ADS  Article  Google Scholar 

  38. 38.

    P. Yang, MRS Bull., 2012, 37(9): 806

    Article  Google Scholar 

  39. 39.

    M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev., 2010, 110(11): 6446

    Article  Google Scholar 

  40. 40.

    A. Fujishima and K. Honda, Nature, 1972, 238(5358): 37

    ADS  Article  Google Scholar 

  41. 41.

    A. J. Nozik, Appl. Phys. Lett., 1976, 29(3): 150

    ADS  Article  Google Scholar 

  42. 42.

    K. Ohashi, J. Mccann, and J. O. M. Bockris, Nature, 1977, 266(5603): 610

    ADS  Article  Google Scholar 

  43. 43.

    A. Kudo, MRS Bull., 2011, 36(1): 32

    Article  Google Scholar 

  44. 44.

    S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, Science, 2010, 327(5962): 185

    ADS  Article  Google Scholar 

  45. 45.

    S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, J. Am. Chem. Soc., 2011, 133(5): 1216

    Article  Google Scholar 

  46. 46.

    A. Heller, E. Aharon-Shalom, W. A. Bonner, and B. Miller, J. Am. Chem. Soc., 1982, 104(25): 6942

    Article  Google Scholar 

  47. 47.

    Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nørskov, and I. Chorkendorff, Nat. Mater., 2011, 10(6): 434

    ADS  Article  Google Scholar 

  48. 48.

    B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, J. Am. Chem. Soc., 2005, 127(15): 5308

    Article  Google Scholar 

  49. 49.

    M. Tomkiewicz and J. M. Woodall, Science, 1977, 196(4293): 990

    ADS  Article  Google Scholar 

  50. 50.

    J. Sun, C. Liu, and P. Yang, J. Am. Chem. Soc., 2011, 133(48): 19306

    Article  Google Scholar 

  51. 51.

    C. Liu, J. Sun, J. Tang, and P. Yang, Nano Lett., 2012, 12(10): 5407

    ADS  Article  Google Scholar 

  52. 52.

    Y. J. Hwang, C. Hahn, B. Liu, and P. Yang, ACS Nano, 2012, 6(6): 5060

    Article  Google Scholar 

  53. 53.

    F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, Chem. Sci., 2011, 2(4): 737

    Article  Google Scholar 

  54. 54.

    Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, Nat. Mater., 2011, 10(7): 539

    ADS  Article  Google Scholar 

  55. 55.

    Y. J. Hwang, A. Boukai, and P. D. Yang, Nano Lett., 2009, 9(1): 410

    ADS  Article  Google Scholar 

  56. 56.

    T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, Nat. Mater., 2007, 6(12): 951

    ADS  Article  Google Scholar 

  57. 57.

    Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, Nano Lett., 2012, 12(3): 1678

    ADS  Article  Google Scholar 

  58. 58.

    C. Liu, Y. J. Hwang, H. E. Jeong, and P. Yang, Nano Lett., 2011, 11(9): 3755

    ADS  Article  Google Scholar 

  59. 59.

    P. Yang and J. M. Tarascon, Nat. Mater., 2012, 11(7): 560

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Peidong Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dasgupta, N.P., Yang, P. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion. Front. Phys. 9, 289–302 (2014).

Download citation


  • nanowire
  • photovoltaics
  • artificial photosynthesis
  • photoelectrochemistry
  • solar energy