Advertisement

Frontiers of Physics

, Volume 9, Issue 3, pp 289–302 | Cite as

Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

  • Neil P. Dasgupta
  • Peidong YangEmail author
Review Article

Abstract

Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

Keywords

nanowire photovoltaics artificial photosynthesis photoelectrochemistry solar energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, Annu. Rev. Mater. Res., 2011, 41(1): 269ADSCrossRefGoogle Scholar
  2. 2.
    A. I. Hochbaum and P. Yang, Chem. Rev., 2010, 110(1): 527CrossRefGoogle Scholar
  3. 3.
    B.M. Kayes, H.A. Atwater, and N. S. Lewis, J. Appl. Phys., 2005, 97(11): 114302ADSCrossRefGoogle Scholar
  4. 4.
    L. Hu and G. Chen, Nano Lett., 2007, 7(11): 3249ADSCrossRefGoogle Scholar
  5. 5.
    E. Garnett and P. Yang, Nano Lett., 2010, 10(3): 1082ADSCrossRefGoogle Scholar
  6. 6.
    N. P. Dasgupta, S. Xu, H. J. Jung, A. Iancu, R. Fasching, R. Sinclair, and F. B. Prinz, Adv. Funct. Mater., 2012, 22(17): 3650CrossRefGoogle Scholar
  7. 7.
    O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, Nano Lett., 2008, 8(9): 2638ADSCrossRefGoogle Scholar
  8. 8.
    L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, Appl. Phys. Lett., 2007, 91(23): 233117ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt. Res. Appl., 2012, 20(5): 606CrossRefGoogle Scholar
  10. 10.
    L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett., 2005, 5(7): 1231ADSCrossRefGoogle Scholar
  11. 11.
    L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. Yang, Inorg. Chem., 2006, 45(19): 7535CrossRefGoogle Scholar
  12. 12.
    M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nat. Mater., 2005, 4(6): 455ADSCrossRefGoogle Scholar
  13. 13.
    A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, J. Phys. Chem. B, 2000, 104(5): 949CrossRefGoogle Scholar
  14. 14.
    M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang, J. Phys. Chem. B, 2006, 110(45): 22652CrossRefGoogle Scholar
  15. 15.
    L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, J. Phys. Chem. C, 2007, 111(50): 18451CrossRefGoogle Scholar
  16. 16.
    B. D. Yuhas and P. D. Yang, J. Am. Chem. Soc., 2009, 131(10): 3756CrossRefGoogle Scholar
  17. 17.
    M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nat. Mater., 2010, 9(3): 239ADSGoogle Scholar
  18. 18.
    J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, Nano Lett., 2010, 10(6): 1979ADSCrossRefGoogle Scholar
  19. 19.
    J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Nano Lett., 2009, 9(1): 279ADSCrossRefGoogle Scholar
  20. 20.
    E. Yablonovitch and G. D. Cody, IEEE Trans. Electron. Dev., 1982, 29(2): 300ADSCrossRefGoogle Scholar
  21. 21.
    M. G. Mauk, J. Miner. Met. Mater. Soc., 2003, 55(5): 38CrossRefGoogle Scholar
  22. 22.
    A. Boukai, P. Haney, A. Katzenmeyer, G. M. Gallatin, A. A. Talin, and P. Yang, Chem. Phys. Lett., 2011, 501(4–6): 153ADSCrossRefGoogle Scholar
  23. 23.
    B. Tian, T. J. Kempa, and C. M. Lieber, Chem. Soc. Rev., 2009, 38(1): 16CrossRefGoogle Scholar
  24. 24.
    M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, Nano Lett., 2008, 8(2): 710ADSCrossRefGoogle Scholar
  25. 25.
    B. Z. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature, 2007, 449(7164): 885ADSCrossRefGoogle Scholar
  26. 26.
    S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. Jan Anton Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen, Nat. Mater., 2009, 8(10): 818ADSCrossRefGoogle Scholar
  27. 27.
    A. L. Briseno, T. W. Holcombe, A. I. Boukai, E. C. Garnett, S. W. Shelton, J. J. M. Fréchet, and P. Yang, Nano Lett., 2010, 10(1): 334ADSCrossRefGoogle Scholar
  28. 28.
    J. A. Czaban, D. A. Thompson, and R. R. Lapierre, Nano Lett., 2009, 9(1): 148ADSCrossRefGoogle Scholar
  29. 29.
    J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, Nat. Nanotechnol., 2011, 6(9): 568ADSCrossRefGoogle Scholar
  30. 30.
    L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, Nano Lett., 2010, 10(2): 439ADSCrossRefGoogle Scholar
  31. 31.
    L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, Nat. Mater., 2009, 8(8): 643ADSCrossRefGoogle Scholar
  32. 32.
    V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, Nano Lett., 2008, 8(12): 4391ADSCrossRefGoogle Scholar
  33. 33.
    K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett., 2008, 93(12): 121904ADSCrossRefGoogle Scholar
  34. 34.
    H. A. Atwater and A. Polman, Nat. Mater., 2010, 9(3): 205ADSCrossRefGoogle Scholar
  35. 35.
    S. Brittman, H. Gao, E. C. Garnett, and P. Yang, Nano Lett., 2011, 11(12): 5189ADSCrossRefGoogle Scholar
  36. 36.
    N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. USA, 2006, 103(43): 15729ADSCrossRefGoogle Scholar
  37. 37.
    A. Listorti, J. Durrant, and J. Barber, Nat. Mater., 2009, 8(12): 929ADSCrossRefGoogle Scholar
  38. 38.
    P. Yang, MRS Bull., 2012, 37(9): 806CrossRefGoogle Scholar
  39. 39.
    M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev., 2010, 110(11): 6446CrossRefGoogle Scholar
  40. 40.
    A. Fujishima and K. Honda, Nature, 1972, 238(5358): 37ADSCrossRefGoogle Scholar
  41. 41.
    A. J. Nozik, Appl. Phys. Lett., 1976, 29(3): 150ADSCrossRefGoogle Scholar
  42. 42.
    K. Ohashi, J. Mccann, and J. O. M. Bockris, Nature, 1977, 266(5603): 610ADSCrossRefGoogle Scholar
  43. 43.
    A. Kudo, MRS Bull., 2011, 36(1): 32CrossRefGoogle Scholar
  44. 44.
    S. W. Boettcher, J. M. Spurgeon, M. C. Putnam, E. L. Warren, D. B. Turner-Evans, M. D. Kelzenberg, J. R. Maiolo, H. A. Atwater, and N. S. Lewis, Science, 2010, 327(5962): 185ADSCrossRefGoogle Scholar
  45. 45.
    S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, J. Am. Chem. Soc., 2011, 133(5): 1216CrossRefGoogle Scholar
  46. 46.
    A. Heller, E. Aharon-Shalom, W. A. Bonner, and B. Miller, J. Am. Chem. Soc., 1982, 104(25): 6942CrossRefGoogle Scholar
  47. 47.
    Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Björketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nørskov, and I. Chorkendorff, Nat. Mater., 2011, 10(6): 434ADSCrossRefGoogle Scholar
  48. 48.
    B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, J. Am. Chem. Soc., 2005, 127(15): 5308CrossRefGoogle Scholar
  49. 49.
    M. Tomkiewicz and J. M. Woodall, Science, 1977, 196(4293): 990ADSCrossRefGoogle Scholar
  50. 50.
    J. Sun, C. Liu, and P. Yang, J. Am. Chem. Soc., 2011, 133(48): 19306CrossRefGoogle Scholar
  51. 51.
    C. Liu, J. Sun, J. Tang, and P. Yang, Nano Lett., 2012, 12(10): 5407ADSCrossRefGoogle Scholar
  52. 52.
    Y. J. Hwang, C. Hahn, B. Liu, and P. Yang, ACS Nano, 2012, 6(6): 5060CrossRefGoogle Scholar
  53. 53.
    F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, and K. Sivula, Chem. Sci., 2011, 2(4): 737CrossRefGoogle Scholar
  54. 54.
    Y. W. Chen, J. D. Prange, S. Dühnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, Nat. Mater., 2011, 10(7): 539ADSCrossRefGoogle Scholar
  55. 55.
    Y. J. Hwang, A. Boukai, and P. D. Yang, Nano Lett., 2009, 9(1): 410ADSCrossRefGoogle Scholar
  56. 56.
    T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, Nat. Mater., 2007, 6(12): 951ADSCrossRefGoogle Scholar
  57. 57.
    Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, and P. Yang, Nano Lett., 2012, 12(3): 1678ADSCrossRefGoogle Scholar
  58. 58.
    C. Liu, Y. J. Hwang, H. E. Jeong, and P. Yang, Nano Lett., 2011, 11(9): 3755ADSCrossRefGoogle Scholar
  59. 59.
    P. Yang and J. M. Tarascon, Nat. Mater., 2012, 11(7): 560ADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.The Center of Excellence for Advanced Materials Research (CEAMR), Chemistry DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations