Skip to main content
Log in

Higgs boson searches at the Tevatron

  • Review article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

This article reviews the Higgs searches at the Tevatron, as presented over the summer of 2012; both standard model (SM) and beyond the standard model (BSM) results are discussed as detailed (arXiv: 1207.0449; Phys. Rev. Lett., 2012, 109: 071804; Phys. Rev. D, 2012, 85: 032005). We discuss the combination of searches by the CDF and D0 Collaborations for the standard model Higgs boson in the mass range 100–200 GeV/c 2 produced in the the ggH, WH, ZH, t{ie27-1}H, and vector boson fusion production modes, and decaying in the Hb{ie27-2}, HW + W , HZZ, Hτ + τ , and Hγγ modes. The data, collected at the Fermilab Tevatron collider in p{ie27-3} collisions at {ie27-4} TeV, correspond to integrated luminosities of up to 10 fb−1. In the absence of signal, we expect to exclude the regions 100<m H < 120 GeV/c 2 and 139<m H < 184 GeV/c 2. We exclude, at the 95% C.L., two regions: 100<m H < 103 GeV/c 2, and 147<m H < 180 GeV/c 2. We observe a significant excess of events in the mass range between 115 and 140 GeV/c 2. The local significance corresponds to 3.0 standard deviations at m H = 120 GeV/c 2; the global significance (incorporating the look-elsewhere effect) for such an excess anywhere in the full mass range investigated is approximately 2.5 standard deviations. Furthermore, we separately combine searches for Hb{ie27-5}, HW+W and Hγγ. We find that the excess is concentrated in the Hb{ie27-6} channel, appearing in the searches over a broad range of m H ; the maximum local significance of 3.3 standard deviations corresponds to a global significance of approximately 3.1 standard deviations. The observed signal strengths in all channels are consistent with the expectation for a standard model Higgs boson at m H = 125 GeV/c 2. The production of neutral Higgs bosons in association with b-quarks can be significantly enhanced in various beyond the standard model scenarios, including Supersymmetry. The recent combination of such searches from the two collaborations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. T. Aaltonen, et al. [CDF and D0 Collaborations], arXiv: 1207.0449, 2012

  2. T. Aaltonen, et al. [CDF and D0 Collaborations], Phys. Rev. Lett., 2012, 109: 071804

    Article  ADS  Google Scholar 

  3. T. Aaltonen, et al. [CDF and D0 Collaborations], Phys. Rev. D, 2012, 85: 032005

    Article  ADS  Google Scholar 

  4. S. L. Glashow, Nucl. Phys., 1961, 22(4): 579

    Article  Google Scholar 

  5. S. Weinberg, Phys. Rev. Lett., 1967, 19(21): 1264

    Article  ADS  Google Scholar 

  6. A. Salam, Elementary Particle Theory, edited by N. Svartholm, Stockholm: Almqvist & Wiksell, 1968: 367

  7. F. Englert and R. Brout, Phys. Rev. Lett., 1964, 13(9): 321

    Article  MathSciNet  ADS  Google Scholar 

  8. P. W. Higgs, Phys. Rev. Lett., 1964, 13(16): 508

    Article  MathSciNet  ADS  Google Scholar 

  9. G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett., 1964, 13(20): 585

    Article  ADS  Google Scholar 

  10. P. W. Higgs, Phys. Rev., 1966, 145(4): 1156

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Aaltonen, et al. [CDF and D0 Collaborations], arXiv: 1204.0042, 2012

  12. T. Aaltonen, et al. [CDF and D0 Collaborations], Phys. Rev. D, 2012, 86: 092003

    Article  ADS  Google Scholar 

  13. The ALEPH, CDF, D0, DELPHI, L3, OPAL, and SLD Collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group, and the SLD Electroweak and Heavy Flavor Working Groups, arXiv: 1012.2367v2, 2011

  14. The ALEPH, DELPHI, L3 and OPAL Collaborations, and the LEP Working Group for Higgs Boson Searches, Phys. Lett. B, 2003, 565: 61

  15. G. Aad, et al. [ATLAS Collaboration], Phys. Lett. B, 2012, 716: 1

    Article  ADS  Google Scholar 

  16. S. Chatrchyan, et al. [CMS Collaboration], Phys. Lett. B, 2012, 716: 30

    Article  ADS  Google Scholar 

  17. G. Aad, et al. [ATLAS Collaboration], arXiv: 1207.0210, 2012; submitted to Phys. Lett. B.

  18. S. Chatrchyan, et al. [CMS Collaboration], Phys. Lett. B, 2012, 710: 284

    Article  ADS  Google Scholar 

  19. CDF and D0 use cylindrical coordinate systems with origins in the centers of the detectors, where θ and φ are the polar and azimuthal angles, respectively, and pseudora pidity is η = −ln tan(θ/2). The missing E T {ie283-1} is defined by {ie283-2} = calorimeter tower number, where {ie283-3} is a unit vector perpendicular to the beam axis and pointing at the ith calorimeter tower. {ie283-4} is corrected for high-energy muons and also jet energy corrections.We define {ie283-5}. The transverse momentum pT is defined to be p sin θ.

  20. T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys., 2006, 05: 026. We use pythia version 6.216 to generate the Higgs boson signals.

    Google Scholar 

  21. H. L. Lai, J. Huston, S. Kuhlmann, J. Morfin, F. Olness, J. F. Owens, J. Pumplin, and W. K. Tung, Eur. Phys. J. C, 2000, 12(3): 375

    Article  ADS  Google Scholar 

  22. J. Pumplin, et al., J. High Energy Phys., 2002, 07: 012

    Article  ADS  Google Scholar 

  23. C. Anastasiou, R. Boughezal, and F. Petriello, J. High Energy Phys., 2009, 04: 003

    Article  ADS  Google Scholar 

  24. D. de Florian and M. Grazzini, Phys. Lett. B, 2009, 674(4–5): 291

    ADS  Google Scholar 

  25. J. Baglio and A. Djouadi, J. High Energy Phys., 2010, 10: 064

    Article  ADS  Google Scholar 

  26. O. Brein, R. V. Harlander, M. Weisemann, and T. Zirke, Eur. Phys. J. C, 2012, 72(2): 1868

    Article  ADS  Google Scholar 

  27. P. Bolzoni, F. Maltoni, S. O. Moch, and M. Zaro, Phys. Rev. Lett., 2010, 105(1): 011801

    Article  ADS  Google Scholar 

  28. M. Ciccolini, A. Denner, and S. Dittmaier, Phys. Rev. Lett., 2007, 99(16): 161803

    Article  ADS  Google Scholar 

  29. M. Ciccolini, A. Denner, and S. Dittmaier, Phys. Rev. D, 2008, 77(1): 013002

    Article  ADS  Google Scholar 

  30. A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C, 2009, 63(2): 189

    Article  ADS  Google Scholar 

  31. S. Alekhin, et al. [PDF4LHC Working Group], arXiv: 1101.0536, 2011

  32. M. Botje, et al. [PDF4LHC Working Group], arXiv: 1101.0538, 2011

  33. C. Anastasiou, G. Dissertori, M. Grazzini, F. Stöckli, and B. R. Webber, J. High Energy Phys., 2009, 08: 099

    Article  ADS  Google Scholar 

  34. S. Dittmaier, et al. [LHC Higgs Cross Section Working Group], arXiv: 1201.3084, 2012

  35. A. Djouadi, J. Kalinowski, and M. Spira, Comput. Phys. Commun., 1998, 108(1): 56

    Article  ADS  MATH  Google Scholar 

  36. A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weber, Phys. Rev. D, 2006, 74(1): 013004

    Google Scholar 

  37. A. Bredenstein, A. Denner, S. Dittmaier, A. Mück, and M. M. Weber, J. High Energy Phys., 2007, 02: 080

    Article  ADS  Google Scholar 

  38. G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Phys. Lett. B, 2003, 564(1–2): 65

    ADS  Google Scholar 

  39. G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Nucl. Phys. B, 2006, 737(1–2): 73

    Article  ADS  MATH  Google Scholar 

  40. M. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. Polosa, J. High Energy Phys., 2003, 07: 001

    Article  ADS  Google Scholar 

  41. S. Frixione and B. R. Webber, J. High Energy Phys., 2002, 06: 029

    Article  ADS  Google Scholar 

  42. G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber, J. High Energy Phys., 2001, 01: 010

    Article  ADS  Google Scholar 

  43. A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, S. Shichanin, and A. Semenov, arXiv: hep-ph/9908288, 1999

  44. E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov, V. Edneral, V. Savrin, A. Semenov, and A. Sherstnev, Nucl. Instrum. Methods Phys. Res.: Sect. A, 2004, 534: 250

    Article  ADS  Google Scholar 

  45. E. E. Boos, V. E. Bunichev, L. V. Dudko, V. I. Savrin, and A. V. Sherstnev, Phys. At. Nucl., 2006, 69(8): 1317

    Article  Google Scholar 

  46. J. M. Campbell and R. K. Ellis, Phys. Rev. D, 1999, 60(11): 113006

    Article  ADS  Google Scholar 

  47. U. Langenfeld, S. Moch, and P. Uwer, Phys. Rev. D, 2009, 80(5): 054009

    Article  ADS  Google Scholar 

  48. N. Kidonakis, Phys. Rev. D, 2006, 74(11): 114012

    Article  ADS  Google Scholar 

  49. R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl. Phys. B, 1991, 359(2–3): 343; Erratum, Nucl. Phys. B, 2002, 644: 403

    Article  ADS  Google Scholar 

  50. A heavy-flavor jet is a reconstructed cluster of calorimeter energies associated with particles produced in the hadronization and decay of a bottom or charm quark.

  51. A B-tagged jet is one identified to have originated from the decay of a heavy flavor quark.

  52. D. Acosta, et al. [CDF Collaboration], Phys. Rev. D, 2005, 71: 032001

    Article  ADS  Google Scholar 

  53. A. Abulencia, et al. [CDF Collaboration], J. Phys. G, 2007, 34: 2457

    Article  ADS  Google Scholar 

  54. V. M. Abazov, et al. [D0 Collaboration], Nucl. Instrum. Methods Phys. Res.: Sect. A, 2006, 565: 463

    Article  ADS  Google Scholar 

  55. M. Abolins, et al., Nucl. Instrum. Methods Phys. Res.: Sect. A, 2008, 584: 75

    Article  ADS  Google Scholar 

  56. R. Angstadt, et al., Nucl. Instrum. Methods Phys. Res.: Sect. A, 2010, 622: 298

    Article  ADS  Google Scholar 

  57. For a recent review, see: P. C. Bhat, Ann. Rev. Nucl. Part. Sci., 2011, 61(1): 281. The specific details of each analysis’s MVA are described in the respective references.

    Article  ADS  Google Scholar 

  58. V. M. Abazov, et al., Nucl. Instrum. Methods Phys. Res.: Sect. A, 2010, 620: 490

    Article  ADS  Google Scholar 

  59. J. Freeman, et al., Nucl. Instrum. Methods Phys. Res.: Sect. A, 2013, 697: 64

    Article  ADS  Google Scholar 

  60. D. Acosta, et al. [CDF Collaboration], Phys. Rev. D, 2005, 71: 052003

    Article  ADS  Google Scholar 

  61. A. Abulencia, et al. [CDF Collaboration], Phys. Rev. D, 2006, 74: 072006

    Article  ADS  Google Scholar 

  62. Statistics, in: K. Nakamura, et al. [Particle Data Group], J. Phys. G, 2010, 37: 075021.

    Article  ADS  Google Scholar 

  63. T. Aaltonen, et al. [CDF Collaboration], Phys. Rev. Lett., 2012, 109(11): 111802

    Article  ADS  Google Scholar 

  64. V. M. Abazov, et al. [D0 Collaboration], Phys. Rev. Lett., 2012, 109(12): 121802

    Article  ADS  Google Scholar 

  65. W. Fisher, FERMILAB-TM-2386-E, 2006

  66. T. Junk Nucl. Instrum. Methods Phys. Res.: Sect. A, 1999, 434: 435

    Article  ADS  Google Scholar 

  67. A. L. Read, J. Phys. G, 2002, 28(10): 2693

    Article  MathSciNet  ADS  Google Scholar 

  68. I. W. Stewart and F. J. Tackmann, Phys. Rev. D, 2012, 85(3): 034011

    Article  ADS  Google Scholar 

  69. J. M. Campbell, R. K. Ellis, and C. Williams, Phys. Rev. D, 2010, 81(7): 074023

    Article  ADS  Google Scholar 

  70. L. Lyons, Annals of Applied Statistics, 2008, 2(3): 887

    Article  MathSciNet  MATH  Google Scholar 

  71. O. J. Dunn, J. Am. Stat. Assoc., 1961, 56(293): 52

    Article  MathSciNet  MATH  Google Scholar 

  72. A particular decay mode defined by an experimental signature as done here may be an admixture of several, though dominated by the one denoted.

  73. V. Barger, J. L. Hewett, and R. J. N. Phillips, Phys. Rev. D, 1990, 41(11): 3421

    Article  ADS  Google Scholar 

  74. H. P. Nilles, Phys. Rep., 1984, 110(1–2): 1

    Article  ADS  Google Scholar 

  75. H. E. Haber, and G. L. Kane, Phys. Rep., 1985, 117(2-4): 75

    Article  ADS  Google Scholar 

  76. The ALEPH Collaboration, The DELPHI Collaboration, The L3 Collaboration, and The OPAL Collaboration, Eur. Phys. J. C, 2006, 47: 547

  77. T. Affolder, et al. [CDF Collaboration], Phys. Rev. Lett., 2001, 86: 4472

    Article  ADS  Google Scholar 

  78. A. Abulencia, et al. [CDF Collaboration], Phys. Rev. Lett., 2006, 96: 011802

    Article  ADS  Google Scholar 

  79. T. Aaltonen, et al. [CDF Collaboration], Phys. Rev. D, 2012, 85: 032005

    Article  ADS  Google Scholar 

  80. V. M. Abazov, et al. [D0 Collaboration], Phys. Rev. Lett., 2005, 95(15): 151801

    Article  ADS  Google Scholar 

  81. V. M. Abazov, et al. [D0 Collaboration], Phys. Rev. Lett., 2006, 97(12): 121802

    Article  ADS  Google Scholar 

  82. V. M. Abazov, et al. [D0 Collaboration], Phys. Rev. Lett., 2008, 101(7): 071804

    Article  ADS  Google Scholar 

  83. V. M. Abazov, et al. [D0 Collaboration], Phys. Rev. Lett., 2008, 101(22): 221802

    Article  ADS  Google Scholar 

  84. V. M. Abazov, et al. [D0 Collaboration], Phys. Rev. Lett., 2009, 102(5): 051804

    Article  ADS  Google Scholar 

  85. V. M. Abazov, et al. [D0 Collaboration], Phys. Rev. Lett., 2010, 104(15): 151801

    Article  ADS  Google Scholar 

  86. V. M. Abazov, et al. [D0 Collaboration], Phys. Lett. B, 2011, 698: 97

    Article  ADS  Google Scholar 

  87. V. M. Abazov, et al. [D0 Collaboration], Phys. Rev. Lett., 2011, 107(12): 121801

    Article  ADS  Google Scholar 

  88. V. M. Abazov, et al. [D0 Collaboration], Phys. Lett. B, 2012, 707: 323

    Article  ADS  Google Scholar 

  89. V. M. Abazov, et al. [D0 Collaboration], Phys. Lett. B, 2012, 710: 569

    Article  ADS  Google Scholar 

  90. CMS Collaboration, Phys. Rev. Lett., 2011, 106: 231801

    Google Scholar 

  91. ATLAS Collaboration, Phys. Lett. B, 2011, 705: 174

  92. CMS Collaboration, Phys. Lett. B, 2012, 713: 68

  93. S. Heinemeyer, W. Hollik, and G. Weiglein, Eur. Phys. J. C, 1999, 9: 343, FEYNHIGGS version 2.6.8 is used.

    ADS  Google Scholar 

  94. S. Heinemeyer, W. Hollik, and G. Weiglein, Comput. Phys. Commun., 2000, 124(1): 76

    Article  ADS  MATH  Google Scholar 

  95. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, and G. Weiglein, Eur. Phys. J. C, 2003, 28(1): 133

    Article  ADS  Google Scholar 

  96. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, J. High Energy Phys., 2007, 02: 047

    Article  ADS  Google Scholar 

  97. L. Hofer, U. Nierste, and D. Shere, J. High Energy Phys., 2009, 10: 081

    Article  ADS  Google Scholar 

  98. D. Noth and M. Spira, Phys. Rev. Lett., 2008, 101(18): 181801

    Article  ADS  Google Scholar 

  99. MSUSY = 1 TeV, Xt = 2 TeV, M 2 = 0.2 TeV, |µ| = 0.2 TeV, and m g = 0.8 TeV.

  100. M. Carena, S. Heinemeyer, C. E. M. Wagner, and G. Weiglein, Eur. Phys. J. C, 2006, 45(3): 797

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin J. Davies.

Additional information

on behalf of the CDF and D0 Collaborations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, G.J. Higgs boson searches at the Tevatron. Front. Phys. 8, 270–284 (2013). https://doi.org/10.1007/s11467-013-0293-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0293-0

Keywords

Navigation