Skip to main content
Log in

Detection of explosives with laser-induced breakdown spectroscopy

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Our recent work on the detection of explosives by laser-induced breakdown spectroscopy (LIBS) is reviewed in this paper. We have studied the physical mechanism of laser-induced plasma of an organic explosive, TNT. The LIBS spectra of TNT under single-photon excitation are simulated using MATLAB. The variations of the atomic emission lines intensities of carbon, hydrogen, oxygen, and nitrogen versus the plasma temperature are simulated too. We also investigate the time-resolved LIBS spectra of a common inorganic explosive, black powder, in two kinds of surrounding atmospheres, air and argon, and find that the maximum value of the O atomic emission line SBR of black powder occurs at a gate delay of 596 ns. Another focus of our work is on using chemometic methods such as principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) to distinguish the organic explosives from organic materials such as plastics. A PLS-DA model for classification is built. TNT and seven types of plastics are chosen as samples to test the model. The experimental results demonstrate that LIBS coupled with the chemometric techniques has the capacity to discriminate organic explosive from plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, J. Braz. Chem. Soc., 2007, 18(3): 463

    Article  Google Scholar 

  2. J. E. Parmeter, in: 38th Annual International Carnahan Conference on Security Technology, IEEE, Albuquerque, NM, 2004: 355

    Book  Google Scholar 

  3. T. L. Buxton and P. B. Harrington, Appl. Spectrosc., 2003, 57(2): 223

    Article  ADS  Google Scholar 

  4. O. L. Collin, C. M. Zimmermann, and G. P. Jackson, Int. J. Mass Spectrom., 2009, 279(2–3): 93

    ADS  Google Scholar 

  5. G. W. Cook, P. T. LaPuma, G. L. Hook, and B. A. Eckenrode, J. Forensic Sci., 2010, 55(6): 1582

    Article  Google Scholar 

  6. J. I. Steinfeld and J. Wormhoudt, Annu. Rev. Phys. Chem., 1998, 49(1): 203

    Article  ADS  Google Scholar 

  7. A. P. M. Michel, Spectrochim. Acta B, 2010, 65: 185

    Article  ADS  Google Scholar 

  8. J. S. Huang, Q. L. Chen, and W. D. Zhao, Spectrosc. Spect. Anal., 2009, 29: 3126

    Google Scholar 

  9. D. Q. Yuan and J. T. Xu, Adv. Mater. Res., 2011, 179–180: 1183

    Article  Google Scholar 

  10. P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, Spectrochim Acta B, 2011, 66(1): 12

    Article  ADS  Google Scholar 

  11. V. K. Singh, A. K. Rai, P. K. Rai, and P. K. Jindal, Lasers Med. Sci., 2009, 24(5): 749

    Article  Google Scholar 

  12. Z. X. Lin, L. Chang, J. Li, and L. M. Liu, Spectrosc. Spect. Anal., 2009, 29: 1675

    Google Scholar 

  13. K. Liu, Q. Q. Wang, H. Zhao, and Y. L. Xiao, Spectrosc. Spect. Anal., 2011, 31: 1171

    Google Scholar 

  14. S. Sreedhar, M. A. Kumar, G. M. Kumar, P. P. Kiran, S. P. Tewari, and S. V. Rao, 2010, Proc. SPIE 7665 Chemical Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XI (Orlando, Florida, USA, 6–8 April, 2010: 76650T

  15. J. Handke, F. Duschek, K. Grunewald, and C. Pargmann, 2011, Proc. SPIE 8018 Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII (Orlando, Florida, USA, 26–28 April, 2011: 80180T

  16. V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, Spectrochim. Acta B, 2009, 64: 1028

    Article  ADS  Google Scholar 

  17. Q. Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, Spectrochim. Acta B, 2008, 63: 1011

    Article  ADS  Google Scholar 

  18. J. L. Gottfried, C. A. De Lucia, Munson, and A. W. Miziolek, Anal. Bioanal. Chem., 2009, 395(2): 283

    Article  Google Scholar 

  19. H. Zhao, Q. Q. Wang, K. Liu, and C. H. Ge, Spectrosc. Spect. Anal., 2012, 32: 577

    Google Scholar 

  20. J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, Spectrochim. Acta B, 2009, 64: 1009

    Article  ADS  Google Scholar 

  21. D. L. Death, A. P. Cunningham, and L. J. Pollard, Spectrochim. Acta B, 2009, 64: 1048

    Article  ADS  Google Scholar 

  22. B. L. Sun, J. L. Liu, and Y. B. Cai, Spectrosc. Spect. Anal., 2011, 31: 366

    Google Scholar 

  23. T. Galeano-Diaz, M. I. Acedo-Valenzuela, N. Mora-Diez, and A. Silva-Rodriguez, Electroanal., 2011, 23(2): 449

    Article  Google Scholar 

  24. J. L. Jr De Lucia, C. A. Gottfried, Munson, and A. W. Miziolek, Appl. Opt., 2008, 47(31): G112

    Article  ADS  Google Scholar 

  25. Q. Q. Wang, K. Liu, and H. Zhao, Chin. Phys. Lett., 2012, 29(4): 044206

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian-Qian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, QQ., Liu, K., Zhao, H. et al. Detection of explosives with laser-induced breakdown spectroscopy. Front. Phys. 7, 701–707 (2012). https://doi.org/10.1007/s11467-012-0272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-012-0272-x

Keywords

Navigation