Frontiers of Physics

, Volume 6, Issue 4, pp 379–397 | Cite as

Properties of the multiorbital Hubbard models for the iron-based superconductors

  • Elbio Dagotto
  • Adriana Moreo
  • Andrew Nicholson
  • Qinglong Luo
  • Shuhua Liang
  • Xiaotian Zhang
Review Article

Abstract

A brief review of the main properties of multiorbital Hubbard models for the Fe-based superconductors is presented. The emphasis is on the results obtained by our group at the University of Tennessee and Oak Ridge National Laboratory, Tennessee, USA, but results by several other groups are also discussed. The models studied here have two, three, and five orbitals, and they are analyzed using a variety of computational and mean-field approximations. A “physical region” where the properties of the models are in qualitative agreement with neutron scattering, photoemission, and transport results is revealed. A variety of interesting open questions are briefly discussed such as: what are the dominant pairing tendencies in Hubbard models? Can pairing occur in an interorbital channel? Are nesting effects of fundamental relevance in the pnictides or approaches based on local moments are more important? What kind of magnetic states are found in the presence of iron vacancies? Can charge stripes exist in iron-based superconductors? Why is transport in the pnictides anisotropic? The discussion of results includes the description of these and other open problems in this fascinating area of research.

Keywords

superconductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc., 2008, 130(11): 3296CrossRefGoogle Scholar
  2. 2.
    G. F. Chen, Z. Li, G. Li, J. Zhou, D. Wu, J. Dong, W. Z. Hu, P. Zheng, Z. J. Chen, H. Q. Yuan, J. Singleton, J. L. Luo, and N. L. Wang, Phys. Rev. Lett., 2008, 101(5): 057007ADSCrossRefGoogle Scholar
  3. 3.
    G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang, Phys. Rev. Lett., 2008, 100(24): 247002ADSCrossRefGoogle Scholar
  4. 4.
    H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Zhu, Europhys. Lett., 2008, 82(1): 17009ADSCrossRefGoogle Scholar
  5. 5.
    X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature, 2008, 453(7196): 761ADSCrossRefGoogle Scholar
  6. 6.
    Z. A. Ren, J. Yang, W. Lu, W. Yi, G. C. Che, X. L. Dong, L. L. Sun, and Z. X. Zhao, Materials Research Innovations, 2008, 12(3): 105CrossRefGoogle Scholar
  7. 7.
    Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, Chin. Phys. Lett., 2008, 25(7): 2215ADSGoogle Scholar
  8. 8.
    Z. A. Ren, G. C. Che, X. L. Dong, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, L. L. Sun, F. Zhou, and Z. X. Zhao, Europhys. Lett., 2008, 83(1): 17002ADSCrossRefGoogle Scholar
  9. 9.
    E. Dagotto, Rev. Mod. Phys., 1994, 66(3): 763ADSCrossRefGoogle Scholar
  10. 10.
    L. Boeri, O. V. Dolgov, and A. A. Golubov, Phys. Rev. Lett., 2008, 101(2): 026403ADSCrossRefGoogle Scholar
  11. 11.
    S. Higashitaniguchi, M. Seto, S. Kitao, Y. Kobayashi, M. Saito, R. Masuda, T. Mitsui, Y. Yoda, Y. Kamihara, M. Hirano, and H. Hosono, Phys. Rev. B, 2008, 78(17): 174507ADSCrossRefGoogle Scholar
  12. 12.
    A. D. Christianson, M. D. Lumsden, O. Delaire, M. B. Stone, D. L. Abernathy, M. A. McGuire, A. S. Sefat, R. Jin, B. C. Sales, D. Mandrus, E. D. Mun, P. C. Canfield, J. Y. Y. Lin, M. Lucas, M. Kresch, J. B. Keith, B. Fultz, E. A. Goremychkin, and R. J. McQueeney, Phys. Rev. Lett., 2008, 101(15): 157004ADSCrossRefGoogle Scholar
  13. 13.
    A. S. Sefat, M. A. McGuire, B. C. Sales, R. Jin, J. Y. Howe, and D. Mandrus, Phys. Rev. B, 2008, 77(17): 174503ADSCrossRefGoogle Scholar
  14. 14.
    R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu, Y. L. Xie, X. F. Wang, R. L. Yang, L. Ding, C. He, D. L. Feng, and X. H. Chen, Phys. Rev. Lett., 2008, 101(8): 087001ADSCrossRefGoogle Scholar
  15. 15.
    K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett., 2008, 100(22): 226402ADSCrossRefGoogle Scholar
  16. 16.
    K. Haule and G. Kotliar, New J. Phys., 2009, 11(2): 025021ADSCrossRefGoogle Scholar
  17. 17.
    A. Dubroka, K. W. Kim, M. Rössle, V.K. Malik, A. J. Drew, R. H. Liu, G. Wu, X. H. Chen, and C. Bernhard, Phys. Rev. Lett., 2008, 101(9): 097011ADSCrossRefGoogle Scholar
  18. 18.
    A. V. Boris, N. N. Kovaleva, S. S. A. Seo, J. S. Kim, P. Popovich, Y. Matiks, R. K. Kremer, and B. Keimer, Phys. Rev. Lett., 2008, 102(2): 027001ADSCrossRefGoogle Scholar
  19. 19.
    C. Liu, T. Kondo, M. E. Tillman, R. Gordon, G. D. Samolyuk, Y. Lee, C. Martin, J. L. McChesney, S. Bud’ko, M. A. Tanatar, E. Rotenberg, P. C. Canfield, R. Prozorov, B. N. Harmon, and A. Kaminski, arXiv:0806.2147, 2008Google Scholar
  20. 20.
    J. Zhao, Q. Huang, C. de la Cruz, S. Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and P. Dai, Nat. Mater., 2008, 7(12): 953ADSCrossRefGoogle Scholar
  21. 21.
    Y. Kohama, Y. Kamihara, H. Kawaji, T. Atake, M. Hirano, and H. Hosono, J. Phys. Soc. Jpn., 2008, 77(9): 094715ADSCrossRefGoogle Scholar
  22. 22.
    K. Nakamura, R. Arita, and M. Imada, J. Phys. Soc. Jpn., 2008, 77(9): 093711ADSCrossRefGoogle Scholar
  23. 23.
    H. Liu, W. Zhang, L. Zhao, X. Jia, J. Meng, G. Liu, X. Dong, G. F. Chen, J. L. Luo, N. L. Wang, W. Lu, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Zhao, Z. Xu, C. Chen, and X. J. Zho, Phys. Rev. B, 2008, 78(18): 184514ADSCrossRefGoogle Scholar
  24. 24.
    H. J. Grafe, D. Paar, G. Lang, N. J. Curro, G. Behr, J. Werner, J. Hamann-Borrero, C. Hess, N. Leps, R. Klingeler, and B. Büchner, Phys. Rev. Lett., 2008, 101(4): 047003ADSCrossRefGoogle Scholar
  25. 25.
    K. Matano, Z. A. Ren, X. L. Dong, L. L. Sun, Z. X. Zhao, and G. Q. Zheng, Europhys. Lett., 2008, 83(5): 57001ADSCrossRefGoogle Scholar
  26. 26.
    A. Kawabata, S. C. Lee, T. Moyoshi, Y. Kobayashi, and M. Sato, J. Phys. Soc. Jpn., 2008, 77(10): 103704ADSCrossRefGoogle Scholar
  27. 27.
    Y. Ishida, T. Shimojima, K. Ishizaka, T. Kiss, M. Okawa, T. Togashi, S. Watanabe, X. Y. Wang, C. T. Chen, Y. Kamihara, M. Hirano, H. Hosono, and S. Shin, Phys. Rev. B, 2009, 79(6): 060503ADSCrossRefGoogle Scholar
  28. 28.
    T. Sato, S. Souma, K. Nakayama, K. Terashima, K. Sugawara, T. Takahashi, Y. Kamihara, M. Hirano, and H. Hosono, J. Phys. Soc. Jpn., 2008, 77(6): 063708ADSCrossRefGoogle Scholar
  29. 29.
    H. Y. Liu, X. W. Jia, W. T. Zhang, L. Zhao, J. Q. Meng, G. D. Liu, X. L. Dong, G. Wu, R. H. Liu, X. H. Chen, Z. A. Ren, Y. Wei, G. C. Che, G. F. Chen, N. L. Wang, G. L. Wang, Y. Zhou, Y. Zhu, X. Y. Wang, Z. X. Zhao, Z. Y. Xu, C. T. Chen, and X. J. Zhou, Chin. Phys. Lett., 2008, 25: 3761ADSCrossRefGoogle Scholar
  30. 30.
    L. Zhao, H. Liu, W. Zhang, J. Meng, X. Jia, G. Liu, X. Dong, G. F. Chen, J. L. Luo, N. L. Wang, G. Wang, Y. Zhou, Y. Zhu, X. Wang, Z. Zhao, Z. Xu, C. Chen, and X. J. Zhou, Chin. Phys. Lett., 2008, 25: 4402ADSCrossRefGoogle Scholar
  31. 31.
    L. Shan, Y. Wang, X. Zhu, G. Mu, L. Fang, and H. H. Wen, Europhys. Lett., 2008, 83(5): 57004ADSCrossRefGoogle Scholar
  32. 32.
    G. Mu, X. Zhu, L. Fang, L. Shan, C. Ren, and H. H. Wen, Chin. Phys. Lett., 2008, 25(11): 2221ADSGoogle Scholar
  33. 33.
    C. Ren, Z. S. Wang, H. Yang, X. Zhu, L. Fang, G. Mu, L. Shan, and H. H. Wen, arXiv:0804.1726, 2008Google Scholar
  34. 34.
    K. Ahilan, F. L. Ning, T. Imai, A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, and D. Mandrus, Phys. Rev. B, 2008, 78(10): 100501 (R)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Nakai, K. Ishida, Y. Kamihara, M. Hirano, and H. Hosono, J. Phys. Soc. Jpn., 2008, 77(7): 073701ADSCrossRefGoogle Scholar
  36. 36.
    Y. Wang, L. Shan, L. Fang, P. Cheng, C. Ren, and H. H. Wen, Supercond. Sci. Technol., 2009, 22(1): 015018ADSCrossRefGoogle Scholar
  37. 37.
    H. Mukuda, N. Terasaki, H. Kinouchi, M. Yashima, Y. Kitaoka, S. Suzuki, S. Miyasaka, S. Tajima, K. Miyazawa, P. M. Shirage, H. Kito, H. Eisaki, and A. Iyo, J. Phys. Soc. Jpn., 2008, 77(9): 093704ADSCrossRefGoogle Scholar
  38. 38.
    O. Millo, I. Asulin, O. Yuli, I. Felner, Z. A. Ren, X. L. Shen, G. C. Che, and Z. X. Zhao, Phys. Rev. B, 2008, 78(9): 092505ADSCrossRefGoogle Scholar
  39. 39.
    X. L. Wang, S. X. Dou, Z. A. Ren, W. Yi, Z. C. Li, Z. X. Zhao, and S. I. K. Lee, J. Phys.: Condens. Matter, 2009, 21(20): 205701ADSCrossRefGoogle Scholar
  40. 40.
    K. Hashimoto, T. Shibauchi, T. Kato, K. Ikada, R. Okazaki, H. Shishido, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto, and Y. Matsuda, Phys. Rev. Lett., 2009, 102(1): 017002ADSCrossRefGoogle Scholar
  41. 41.
    T. Kondo, A. F. Santander-Syro, O. Copie, Chang Liu, M. E. Tillman, E. D. Mun, J. Schmalian, S. L. Bud’ko, M. A. Tanatar, P. C. Canfield, and A. Kaminski, Phys. Rev. Lett., 2008, 101(14): 147003ADSCrossRefGoogle Scholar
  42. 42.
    H. Ding, P. Richard, K. Nakayama, T. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F. Chen, J. L. Luo, and N. L. Wang, Europhys. Lett., 2008, 83(4): 47001ADSCrossRefGoogle Scholar
  43. 43.
    T. Y. Chen, Z. Tesanovic, R. H. Liu, X. H. Chen, and C. L. Chien, Nature, 2008, 453(7199): 1224ADSCrossRefGoogle Scholar
  44. 44.
    D. Parker, O. V. Dolgov, M. M. Korshunov, A. A. Golubov, and I. I. Mazin, Phys. Rev. B, 2008, 78(13): 134524ADSCrossRefGoogle Scholar
  45. 45.
    K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, and H. Aoki, Phys. Rev. Lett., 2008, 101(8): 087004ADSCrossRefGoogle Scholar
  46. 46.
    I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett., 2008, 101(5): 057003ADSCrossRefGoogle Scholar
  47. 47.
    X. Dai, Z. Fang, Y. Zhou, and F. C. Zhang, Phys. Rev. Lett., 2008, 101(5): 057008ADSCrossRefGoogle Scholar
  48. 48.
    Q. Han, Y. Chen, and Z. D. Wang, Europhys. Lett., 2008, 82(3): 37007ADSCrossRefGoogle Scholar
  49. 49.
    B. Liu and I. Eremin, Phys. Rev. B, 2008, 78(1): 014518ADSCrossRefGoogle Scholar
  50. 50.
    P. Lee and X. G. Wen, Phys. Rev. B, 2008, 78(14): 144517ADSCrossRefGoogle Scholar
  51. 51.
    T. Yildirim, Phys. Rev. Lett., 2008, 101(5): 057010ADSCrossRefGoogle Scholar
  52. 52.
    Q. Si and E. Abraham, Phys. Rev. Lett., 2008, 101: 076401ADSCrossRefGoogle Scholar
  53. 53.
    Z. J. Yao, J. X. Li, and Z. D. Wang, New J. Phys., 2009, 11(2): 025009ADSCrossRefGoogle Scholar
  54. 54.
    C. Xu, M. Mueller, and S. Sachdev, Phys. Rev. B, 2008, 78(2): 020501 (R)ADSCrossRefGoogle Scholar
  55. 55.
    E. Manousakis, J. Ren, S. Meng, and E. Kaxiras, Phys. Rev. B, 2008, 78(20): 205112ADSCrossRefGoogle Scholar
  56. 56.
    S. Raghu, X. L. Qi, C. X. Liu, D. J. Scalapino, and S. C. Zhang, Phys. Rev. B, 2008, 77(22): 220503ADSCrossRefGoogle Scholar
  57. 57.
    T. Li, J. Phys.: Condens. Matter, 2008, 20(42): 425203ADSCrossRefGoogle Scholar
  58. 58.
    K. Seo, B. A. Bernevig, and J. Hu, Phys. Rev. Lett., 2008, 101(20): 206404ADSCrossRefGoogle Scholar
  59. 59.
    Y. Ran, F. Wang, H. Zhai, A. Vishwanath, and D. H. Lee, Phys. Rev. B, 2008, 79(1): 014505ADSCrossRefGoogle Scholar
  60. 60.
    Y. Zhou, W. Q. Chen, and F. C. Zhang, Phys. Rev. B, 2008, 78(6): 064514ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    J. Lorenzana, G. Seibold, C. Ortix, and M. Grilli, Phys. Rev. Lett., 2008, 101(18): 186402ADSCrossRefGoogle Scholar
  62. 62.
    R. Sknepnek and G. Samolyuk, Phys. Rev. B, 2009, 79: 054511ADSCrossRefGoogle Scholar
  63. 63.
    M. M. Parish, J. Hu, and B. A. Bernevig, Phys. Rev. B, 2008, 78(14): 144514ADSCrossRefGoogle Scholar
  64. 64.
    H. Y. Choi and Y. Bang, arXiv:0807.4604, 2008Google Scholar
  65. 65.
    S. Yang, W. L. You, S. J. Gu, and H. Q. Lin, Chin. Phys. B, 2009, 18(06): 2545ADSCrossRefGoogle Scholar
  66. 66.
    M. J. Calderon, B. Valenzuela, and E. Bascones, New J. Phys., 2009, 11(1): 013051ADSCrossRefGoogle Scholar
  67. 67.
    M. Daghofer, A. Moreo, J. A. Riera, E. Arrigoni, D. J. Scalapino, and E. Dagotto, Phys. Rev. Lett., 2008, 101(23): 237004ADSCrossRefGoogle Scholar
  68. 68.
    Z. H. Wang, H. Tang, Z. Fang, and X. Dai, arXiv:0805.0736, 2008Google Scholar
  69. 69.
    W. L. You, S. J. Gu, G. S. Tian, and H. Q. Lin, arXiv:0807. 1493, 2008Google Scholar
  70. 70.
    A. Moreo, M. Daghofer, J. A. Riera, and E. Dagotto, Phys. Rev. B, 2009, 79(13): 134502ADSCrossRefGoogle Scholar
  71. 71.
    For an early reference on this topic, see: E. Dagotto and A. Moreo, Phys. Rev. Lett., 1989, 63(19): 2148ADSCrossRefGoogle Scholar
  72. 72.
    C. de la Cruz, Q. Huang, J. W. Lynn, Jiying Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, and P. Dai, Nature (London), 2008, 453(7197): 899ADSCrossRefGoogle Scholar
  73. 73.
    R. Yu, K. T. Trinh, A. Moreo, M. Daghofer, J. A. Riera, S. Haas, and E. Dagotto, Phys. Rev. B, 2009, 79(10): 104510ADSCrossRefGoogle Scholar
  74. 74.
    M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto, Phys. Rev. B, 2010, 81(1): 014511ADSCrossRefGoogle Scholar
  75. 75.
    S. L. Yu, J. Kang, and J. X. Li, Phys. Rev. B, 2009, 79(6): 064517ADSCrossRefGoogle Scholar
  76. 76.
    For a discussion of this relation in the manganite context, see: E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep., 2001, 344(1–3): 1, and references thereinADSCrossRefGoogle Scholar
  77. 77.
    E. Bascones, M. J. Calderón, and B. Valenzuela, Phys. Rev. Lett., 2010, 104(22): 227201ADSCrossRefGoogle Scholar
  78. 78.
    T. Nomura and K. Yamada, J. Phys. Soc. Jpn., 2000, 69(6): 1856ADSCrossRefGoogle Scholar
  79. 79.
    M. Daghofer, Q. L. Luo, R. Yu, D. X. Yao, A. Moreo, and E. Dagotto, Phys. Rev. B, 2010, 81(18): 180514(R)ADSCrossRefGoogle Scholar
  80. 80.
    Q. L. Luo, G. B. Martins, D. X. Yao, M. Daghoffer, R. Yu, A. Moreo, and E. Dagotto, Phys. Rev. B, 2010, 82(10): 104508ADSCrossRefGoogle Scholar
  81. 81.
    V. J. Emery, S. A. Kivelson, and J. M. Tranquada, Proc. Natl. Acad. Sci. USA, 1999, 96(16): 8814ADSCrossRefGoogle Scholar
  82. 82.
    J. Zaanen and O. Gunnarsson, Phys. Rev. B, 1989, 40(10): 7391ADSCrossRefGoogle Scholar
  83. 83.
    D. Poilblanc and T. M. Rice, Phys. Rev. B, 1989, 39(13): 9749ADSCrossRefGoogle Scholar
  84. 84.
    K. Machida, Physica C, 1989, 158(1–2): 192ADSCrossRefGoogle Scholar
  85. 85.
    M. Kato, K. Machida, H. Nakanishi, and M. Fujita, J. Phys. Soc. Jpn., 19980, 59: 1047ADSCrossRefGoogle Scholar
  86. 86.
    T. M. Chuang, M. P. Allan, Jinho Lee, Yang Xie, Ni Ni, S. L. Budko, G. S. Boebinger, P. C. Canfield, and J. C. Davis, Science, 2010, 327(5962): 181ADSCrossRefGoogle Scholar
  87. 87.
    Arsenic nuclear quadrupole results also indicate the presence of two charge environments in some 1111 pnictides, see: G. Lang, H. J. Grafe, D. Paar, F. Hammerath, K. Manthey, G. Behr, J. Werner, and B. Büchner, Phys. Rev. Lett., 2010, 104(9): 097001ADSCrossRefGoogle Scholar
  88. 88.
    Q. L. Luo, D. X. Yao, A. Moreo, and E. Dagotto, Phys. Rev. B, 2011, 83(17): 174513ADSCrossRefGoogle Scholar
  89. 89.
    E. Dagotto and T. M. Rice, Science, 1996, 271(5249): 618, and references therein)ADSCrossRefGoogle Scholar
  90. 90.
    A. Nicholson, W. Ge, X. Zhang, J. A. Riera, M. Daghofer, A. M. Oleś, G. B. Martins, A. Moreo, and E. Dagotto, Phys. Rev. Lett., 2011, 106(21): 217002ADSCrossRefGoogle Scholar
  91. 91.
    A. Moreo, M. Daghofer, A. Nicholson, and E. Dagotto, Phys. Rev. B, 2009, 80(10): 104507ADSCrossRefGoogle Scholar
  92. 92.
    H. Gretarsson, A. Lupascu, J. Kim, D. Casa, T. Gog, W. Wu, S. R. Julian, Z. J. Xu, J. S. Wen, G. D. Gu, R. H. Yuan, Z. G. Chen, N. L. Wang, S. Khim, K. H. Kim, M. Ishikado, I. Jarrige, S. Shamoto, J. H. Chu, I. R. Fisher, and Y. J. Kim, arXiv:1107.2211, 2011Google Scholar
  93. 93.
    F. Bondino, E. Magnano, M. Malvestuto, F. Parmigiani, M. A. McGuire, A. S. Sefat, B. C. Sales, R. Jin, D. Mandrus, E. W. Plummer, D. J. Singh, and N. Mannella, Phys. Rev. Lett., 2008, 101(26): 267001ADSCrossRefGoogle Scholar
  94. 94.
    A. Nicholson, Q. L. Luo, W. Ge, J. A. Riera, M. Daghofer, G. B. Martins, A. Moreo, and E. Dagotto, Phys. Rev. B, 2011, 84(9): 094519ADSCrossRefGoogle Scholar
  95. 95.
    J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B, 2010, 82(18): 180520 (R)ADSCrossRefGoogle Scholar
  96. 96.
    M.H. Fang, H. D. Wang, C.H. Dong, Z. J. Li, C.M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett., 2011, 94(2): 27009ADSCrossRefGoogle Scholar
  97. 97.
    W. Bao, Q. Huang, G. F. Chen, M. A. Green, D. M. Wang, J. B. He, X. Q. Wang, and Y. Qui, Chin. Phys. Lett., 2011, 28(8): 086104ADSCrossRefGoogle Scholar
  98. 98.
    This magnetic state may coexist with a non-magnetic one in a nanoscale phase separated arrangement, see: A. Ricci, N. Poccia, G. Campi, B. Joseph, G. Arrighetti, L. Barba, M. Reynolds, M. Burghammer, H. Takeya, Y. Mizuguchi, Y. Takano, M. Colapietro, N. L. Saini, and A. Bianconi, Phys. Rev. B, 2011, 84(6): 060511(R)ADSCrossRefGoogle Scholar
  99. 99.
    X. P. Wang, T. Qian, P. Richard, P. Zhang, J. Dong, H. D. Wang, C. H. Dong, M. H. Fang, and H. Ding, Europhys. Lett., 2011, 93(5): 57001ADSCrossRefGoogle Scholar
  100. 100.
    K. Wang, H. Lei, and C. Petrovic, Phys. Rev. B, 2011, 83(17): 174503, and references thereinADSCrossRefGoogle Scholar
  101. 101.
    C. Cao and J. Dai, Phys. Rev. Lett., 2011, 107(5): 056401ADSCrossRefGoogle Scholar
  102. 102.
    C. Cao and J. Dai, Phys. Rev. B, 2011, 83(19): 193104ADSCrossRefGoogle Scholar
  103. 103.
    R. Yu, P. Goswami, and Q. Si, arXiv:1104.1445, 2011Google Scholar
  104. 104.
    W. G. Yin, C. H. Lin, and W. Ku, arXiv:1106.0881, 2011Google Scholar
  105. 105.
    A related study also using a spin model can be found in: C. Fang, B. Xu, P. Dai, T. Xiang, and J. Hu, arXiv:1103.4599, 2011Google Scholar
  106. 106.
    W. Lv, W. C. Lee, and P. W. Phillips, arXiv:1105.0432, 2011Google Scholar
  107. 107.
    Q. L. Luo, A. Nicholson, J. A. Riera, D. X. Yao, A. Moreo, and E. Dagotto, Phys. Rev. B, 2011, 84(14): 140506(R)ADSCrossRefGoogle Scholar
  108. 108.
    J. H. Chu, J. G. Analytis, K. De Greve, P. L. McMahon, Z. Islam, Y. Yamamoto, and I. R. Fisher, Science, 2010, 329(5993): 824ADSCrossRefGoogle Scholar
  109. 109.
    E. C. Blomberg, M. A. Tanatar, A. Kreyssig, N. Ni, A. Thaler, Rongwei Hu, S. L. Bud’ko, P. C. Canfield, A. I. Goldman, and R. Prozorov, Phys. Rev. B, 2011, 83: 134505, and references thereinADSCrossRefGoogle Scholar
  110. 110.
    A. Dusza, A. Lucarelli, A. Sanna, S. Massidda, J. H. Chu, I. R. Fisher, and L. Degiorgi, arXiv:1107.0670, 2011Google Scholar
  111. 111.
    B. Valenzuela, E. Bascones, and M. J. Calderón, Phys. Rev. Lett., 2010, 105(20): 207202ADSCrossRefGoogle Scholar
  112. 112.
    K. Sugimoto, E. Kaneshita, and T. Tohyama, J. Phys. Soc. Jpn., 2011, 80(3): 033706, and references thereinADSCrossRefGoogle Scholar
  113. 113.
    X. T. Zhang and E. Dagotto, Phys. Rev. B, 2011, 84(13): 132505, and references thereinADSCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Elbio Dagotto
    • 1
    • 2
  • Adriana Moreo
    • 1
    • 2
  • Andrew Nicholson
    • 1
    • 2
  • Qinglong Luo
    • 1
    • 2
  • Shuhua Liang
    • 1
    • 2
  • Xiaotian Zhang
    • 1
    • 2
  1. 1.Department of Physics and AstronomyThe University of TennesseeKnoxvilleUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations