Electronic and optical properties of semiconductor and graphene quantum dots

Abstract

Our recent work on the electronic and optical properties of semiconductor and graphene quantum dots is reviewed. For strained self-assembled InAs quantum dots on GaAs or InP substrate atomic positions and strain distribution are described using valence-force field approach and continuous elasticity theory. The strain is coupled with the effective mass, k · p, effective bond-orbital and atomistic tight-binding models for the description of the conduction and valence band states. The single-particle states are used as input to the calculation of optical properties, with electron-electron interactions included via configuration interaction (CI) method. This methodology is used to describe multiexciton complexes in quantum dot lasers, and in particular the hidden symmetry as the underlying principle of multiexciton energy levels, manipulating emission from biexcitons for entangled photon pairs, and optical control and detection of electron spins using gates. The self-assembled quantum dots are compared with graphene quantum dots, one carbon atom-thick nanostructures. It is shown that the control of size, shape and character of the edge of graphene dots allows to manipulate simultaneously the electronic, optical, and magnetic properties in a single material system.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. Jacak, P. Hawrylak, and A. Wojs, Quantum Dots, Berlin: Springer, 1998

    Google Scholar 

  2. 2.

    D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures, Chichester: Wiley, 1999

    Google Scholar 

  3. 3.

    P. Hawrylak, and M. Korkusinski, Electronic Properties of Self-Assembled Quantum Dots, in: Single Quantum Dots — Fundamentals, Applications, and New Concepts, edited by P. Michler, Topics in Applied Physics, Berlin: Springer, 2003

    Google Scholar 

  4. 4.

    M. Korkusinski and P. Hawrylak, Coded qubit based on electron spin, in: Semiconductor Quantum Bits, edited by O. Benson and F. Henneberger, Singapore: Pan Stanford Pub lishing, 2008

    Google Scholar 

  5. 5.

    P. Hawrylak, Magnetic ion-carrier interactions in quantum dots, pp 191–220, in: Introduction to the Physics of Diluted Magnetic Semiconductors, edited by Jacek Kossut and Jan Gaj, Springer Series in Materials Science 144, 2011

  6. 6.

    B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nat. Phys., 2007, 3(3): 192

    Article  Google Scholar 

  7. 7.

    P. Hawrylak, Phys. Rev. Lett., 1993, 71(20): 3347

    ADS  Article  Google Scholar 

  8. 8.

    P. Hawrylak, C. Gould, A. Sachrajda, Y. Feng, and Z. Wasilewski, Phys. Rev. B, 1999, 59(4): 2801

    ADS  Article  Google Scholar 

  9. 9.

    M. Ciorga, A. S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski, Phys. Rev. B, 2000, 61(24): R16315

    ADS  Article  Google Scholar 

  10. 10.

    M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, Science, 2001, 291(5503): 451

    ADS  Article  Google Scholar 

  11. 11.

    J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. B, 2003, 67(16): 161308

    ADS  Article  Google Scholar 

  12. 12.

    J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett., 2004, 93(18): 186802

    ADS  Article  Google Scholar 

  13. 13.

    M. Pioro-Ladri`ere, M. Ciorga, J. Lapointe, P. Zawadzki, M. Korkusinski, P. Hawrylak, and A. S. Sachrajda, Phys. Rev. Lett., 2003, 91(2): 026803

    ADS  Article  Google Scholar 

  14. 14.

    P. Hawrylak and M. Korkusiński, Solid State Commun., 2005, 136(9–10): 508

    ADS  Article  Google Scholar 

  15. 15.

    L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett., 2006, 97(3): 036807

    ADS  Article  Google Scholar 

  16. 16.

    M. Korkusinski, I. P. Gimenez, P. Hawrylak, L. Gaudreau, S. A. Studenikin, and A. S. Sachrajda, Phys. Rev. B, 2007, 75(11): 115301

    ADS  Article  Google Scholar 

  17. 17.

    G. Granger, L. Gaudreau, A. Kam, M. Pioro-Ladrière, S. A. Studenikin, Z. R. Wasilewski, P. Zawadzki, and A. S. Sachrajda, Phys. Rev. B, 2010, 82(7): 075304

    ADS  Article  Google Scholar 

  18. 18.

    L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, Appl. Phys. Lett., 1985, 47(10): 1099

    ADS  Article  Google Scholar 

  19. 19.

    P. M. Petroff, Epitaxial Growth and Electronic Structure of Quantum Dots, in: Single Quantum Dots — Fundamentals, Applications, and New Concepts, edited by P. Michler, Topics in Applied Physics, Berlin: Springer, 2003

    Google Scholar 

  20. 20.

    Y. Arakawa and H. Sakaki, Appl. Phys. Lett., 1982, 40(11): 939

    ADS  Article  Google Scholar 

  21. 21.

    N. N. Ledentsov, Semicond. Sci. Technol., 2011, 26(1): 014001

    ADS  Article  Google Scholar 

  22. 22.

    S. Fafard, K. Hinzer, S. Raymond, M. Dion, J. McCaffrey, Y. Feng, and S. Charbonneau, Science, 1996, 274(5291): 1350

    ADS  Article  Google Scholar 

  23. 23.

    M. V. Maximov, Yu. M. Shernyakov, A. F. Tsatsul’nikov, A. V. Lunev, A. V. Sakharov, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, P. S. Kop’ev, L. V. Asryan, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, A. O. Kosogov, and P. Werner, J. Appl. Phys., 1998, 83(10): 5561

    ADS  Article  Google Scholar 

  24. 24.

    S. Fafard, Z. R. Wasilewski, C. Ni Allen, K. Hinzer, J. P. McCaffrey, and Y. Feng, Appl. Phys. Lett., 1999, 75(7): 986

    ADS  Article  Google Scholar 

  25. 25.

    G. Ortner, C. Ni Allen, C. Dion, P. Barrios, D. Poitras, D. Dalacu, G. Pakulski, J. Lapointe, P. J. Poole, W. Render, and S. Raymond, Appl. Phys. Lett., 2006, 88(12): 121119

    ADS  Article  Google Scholar 

  26. 26.

    C. E. Valdivia, E. Desfonds, D. Masson, S. Fafard, A. Carlson, J. Cook, T. J. Hall, and K. Hinzer, Proc. SPIE, 2008, 7099: 709915

    Article  Google Scholar 

  27. 27.

    A. Wojs and P. Hawrylak, Phys. Rev. B, 1997, 55(19): 13066

    ADS  Article  Google Scholar 

  28. 28.

    A. Wojs and P. Hawrylak, Solid State Commun., 1996, 100(7): 487

    ADS  Article  Google Scholar 

  29. 29.

    P. Hawrylak and A. Wojs, Semicond. Sci. Technol., 1996, 11(11S): 1516

    ADS  Article  Google Scholar 

  30. 30.

    P. Hawrylak, Phys. Rev. B, 1999, 60(8): 5597

    ADS  Article  Google Scholar 

  31. 31.

    M. Bayer, O. Stern, P. Hawrylak, S. Fafard, and A. Forchel, Nature, 2000, 405(6789): 923

    ADS  Article  Google Scholar 

  32. 32.

    P. Hawrylak, Solid State Commun., 2003, 127(12): 793

    ADS  Article  Google Scholar 

  33. 33.

    P. Hawrylak, G. A. Narvaez, M. Bayer, and A. Forchel, Phys. Rev. Lett., 2000, 85(2): 389

    ADS  Article  Google Scholar 

  34. 34.

    J. Lefebvre, P. J. Poole, J. Fraser, G. C. Aers, D. Chithrani, and R. L. Williams, J. Cryst. Growth, 2002, 234(2–3): 391

    ADS  Article  Google Scholar 

  35. 35.

    M. E. Reimer, M. Korkusinski, D. Dalacu, J. Lefebvre, J. Lapointe, P. J. Poole, G. C. Aers, W. R. McKinnon, P. Hawrylak, and R. L. Williams, Phys. Rev. B, 2008, 78(19): 195301

    ADS  Article  Google Scholar 

  36. 36.

    D. Dalacu, K. Mnaymneh, V. Sazonova, P. J. Poole, G. C. Aers, J. Lapointe, and R. Cheriton A. J. Spring Thorpe, and R. Williams, Phys. Rev. B, 2010, 82(3): 033301

    ADS  Article  Google Scholar 

  37. 37.

    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 2004, 306(5696): 666

    ADS  Article  Google Scholar 

  38. 38.

    T. Ihn, S. Gustavsson, U. Gasser, B. Küng, T. Müller, R. Schleser, M. Sigrist, I. Shorubalko, R. Leturcq, and K. Ensslin, Solid State Commun., 2009, 149(35–36): 1419

    ADS  Article  Google Scholar 

  39. 39.

    A. D. Güçllü P. Potasz, O. Voznyy, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett., 2009, 103(24): 246805

    ADS  Article  Google Scholar 

  40. 40.

    O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B, 1999, 59(8): 5688

    ADS  Article  Google Scholar 

  41. 41.

    C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, J. Appl. Phys., 1998, 83(5): 2548

    ADS  Article  Google Scholar 

  42. 42.

    W. Sheng and P. Hawrylak, Phys. Rev. B, 2005, 72(3): 035326

    ADS  Article  Google Scholar 

  43. 43.

    G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors, New York: Wiley, 1974

    Google Scholar 

  44. 44.

    A. Zhou and W. Sheng, Eur. Phys. J. B, 2009, 68(2): 233

    ADS  Article  Google Scholar 

  45. 45.

    L. R. C. Fonseca, J. L. Jimenez, and J. P. Leburton, Phys. Rev. B, 1998, 58(15): 9955

    ADS  Article  Google Scholar 

  46. 46.

    A. Wojs, P. Hawrylak, S. Fafard, and L. Jacak, Phys. Rev. B, 1996, 54(8): 5604

    ADS  Article  Google Scholar 

  47. 47.

    Z. R. Wasilewski, S. Fafard, and J. P. McCaffrey, J. Cryst. Growth, 1999, 201–202: 1131

    Article  Google Scholar 

  48. 48.

    S. Raymond, S. Studenikin, A. Sachrajda, Z. Wasilewski, S. J. Cheng, W. Sheng, P. Hawrylak, A. Babinski, M. Potemski, G. Ortner, and M. Bayer, Phys. Rev. Lett., 2004, 92(18): 187402

    ADS  Article  Google Scholar 

  49. 49.

    S. L. Chuang, Physics of Optoelectronic Devices, New York: Wiley, 1995

    Google Scholar 

  50. 50.

    T. B. Bahder, Phys. Rev. B, 1990, 41(17): 11992

    ADS  Article  Google Scholar 

  51. 51.

    J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Philadelphia: SIAM, 2002

    Google Scholar 

  52. 52.

    W. Sheng and J.-P. Leburton, Phys. Stat. Sol. (b), 2003, 237: 394

    ADS  Article  Google Scholar 

  53. 53.

    W. Sheng and J.-P. Leburton, Phys. Rev. B, 2001, 63: 161301 (R)

    ADS  Google Scholar 

  54. 54.

    W. Sheng and J.-P. Leburton, Appl. Phys. Lett., 2002, 81(23): 4449

    ADS  Article  Google Scholar 

  55. 55.

    J. I. Climente, M. Korkusinski, G. Goldoni, and P. Hawrylak, Phys. Rev. B, 2008, 78(11): 115323

    ADS  Article  Google Scholar 

  56. 56.

    C. Y. Hsieh, R. Cheriton, M. Korkusinski, and P. Hawrylak, Phys. Rev. B, 2009, 80(23): 235320

    ADS  Article  Google Scholar 

  57. 57.

    M. F. Doty, J. I. Climente, M. Korkusinski, M. Scheibner, A. S. Bracker, P. Hawrylak, and D. Gammon, Phys. Rev. Lett., 2009, 102(4): 047401

    ADS  Article  Google Scholar 

  58. 58.

    Y. C. Chang, Phys. Rev. B, 1988, 37(14): 8215

    ADS  Article  Google Scholar 

  59. 59.

    J. P. Loehr, Phys. Rev. B, 1994, 50(8): 5429

    ADS  Article  Google Scholar 

  60. 60.

    S. J. Sun and Y. C. Chang, Phys. Rev. B, 2000, 62(20): 13631

    ADS  Article  Google Scholar 

  61. 61.

    M. Zieliński, M. Korkusinski, and P. Hawrylak, Phys. Rev. B, 2010, 81(8): 085301

    ADS  Article  Google Scholar 

  62. 62.

    E. S. Kadantsev, M. Zielinski, M. Korkusinski, and P. Hawrylak, J. Appl. Phys., 2010, 107(10): 104315

    ADS  Article  Google Scholar 

  63. 63.

    E. S. Kadantsev and P. Hawrylak, Appl. Phys. Lett., 2011, 98(2): 023108

    ADS  Article  Google Scholar 

  64. 64.

    L. He and A. Zunger, Phys. Rev. B, 2006, 73(11): 115324

    ADS  Article  Google Scholar 

  65. 65.

    A. J. Williamson, L. W. Wang, and A. Zunger, Phys. Rev. B, 2000, 62(19): 12963

    ADS  Article  Google Scholar 

  66. 66.

    A. Canning, L. W. Wang, A. Williamson, and A. Zunger, J. Comput. Phys., 2000, 160(1): 29

    MathSciNet  ADS  MATH  Article  Google Scholar 

  67. 67.

    G. Bester and A. Zunger, Phys. Rev. B, 2005, 71(4): 045318

    ADS  Article  Google Scholar 

  68. 68.

    D. J. Chadi, Phys. Rev. B, 1977, 16(2): 790

    ADS  Article  Google Scholar 

  69. 69.

    J. C. Slater and G. F. Koster, Phys. Rev., 1954, 94(6): 1498

    ADS  MATH  Article  Google Scholar 

  70. 70.

    P. Vogl, H. P. Hjalamarson, and J. D. Dow, J. Phys. Chem. Solids, 1983, 44(5): 365

    ADS  Article  Google Scholar 

  71. 71.

    J. M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Rev. B, 1998, 57(11): 6493

    ADS  Article  Google Scholar 

  72. 72.

    G. Klimeck, R. C. Bowen, T. B. Boykin, and T. A. Cwik, Superlattices Microstruct., 2000, 27(5–6): 519

    ADS  Article  Google Scholar 

  73. 73.

    T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, Phys. Rev. B, 2002, 66(12): 125207

    ADS  Article  Google Scholar 

  74. 74.

    J. G. Díaz and G. W. Bryant, Phys. Rev. B, 2006, 73(7): 075329

    ADS  Article  Google Scholar 

  75. 75.

    S. Lee, F. Oyafuso, P. von Allmen, and G. Klimeck, Phys. Rev. B, 2004, 69(4): 045316

    ADS  Article  Google Scholar 

  76. 76.

    W. Sheng and J. P. Leburton, Appl. Phys. Lett., 2002, 80(15): 2755

    ADS  Article  Google Scholar 

  77. 77.

    Y. Nabetani, T. Ishikawa, S. Noda, and A. Sasaki, J. Appl. Phys., 1994, 76(1): 347

    ADS  MATH  Article  Google Scholar 

  78. 78.

    W. Sheng, Appl. Phys. Lett., 2006, 89(17): 173129

    ADS  Article  Google Scholar 

  79. 79.

    W. Sheng, Appl. Phys. Lett., 2008, 92(4): 043113

    ADS  Article  Google Scholar 

  80. 80.

    W. Sheng and S. J. Xu, Phys. Rev. B, 2008, 77(11): 113305

    ADS  Article  Google Scholar 

  81. 81.

    M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, Phys. Rev. B, 2002, 65(19): 195315

    ADS  Article  Google Scholar 

  82. 82.

    O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett., 2000, 84(11): 2513

    ADS  Article  Google Scholar 

  83. 83.

    N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Gerardot, and P. M. Petroff, Phys. Rev. Lett., 2006, 96(13): 130501

    ADS  Article  Google Scholar 

  84. 84.

    W. Sheng, S. J. Cheng, and P. Hawrylak, Phys. Rev. B, 2005, 71(3): 035316

    ADS  Article  Google Scholar 

  85. 85.

    T. Kazimierczuk, M. Goryca, M. Koperski, A. Golnik, J. A. Gaj, M. Nawrocki, P. Wojnar, and P. Kossacki, Phys. Rev. B, 2010, 81(15): 155313

    ADS  Article  Google Scholar 

  86. 86.

    T. Takagahara, Phys. Rev. B, 1993, 47(8): 4569

    ADS  Article  Google Scholar 

  87. 87.

    T. Takagahara, Phys. Rev. B, 2000, 62(24): 16840

    ADS  Article  Google Scholar 

  88. 88.

    S. V. Gupalov and E. L. Ivchenko, Phys. Solid State, 2000, 42(11): 2030

    ADS  Article  Google Scholar 

  89. 89.

    E. Kadantsev and P. Hawrylak, Phys. Rev. B, 2010, 81(4): 045311

    ADS  Article  Google Scholar 

  90. 90.

    G. Bester, S. Nair, and A. Zunger, Phys. Rev. B, 2003, 67: 161306 (R)

    ADS  Article  Google Scholar 

  91. 91.

    R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. W. Pohl, and D. Bimberg, Phys. Rev. Lett., 2005, 95(25): 257402

    ADS  Article  Google Scholar 

  92. 92.

    A. J. Shields, Nat. Photon., 2007, 1(4): 215

    ADS  Article  Google Scholar 

  93. 93.

    K. Kowalik, O. Krebs, A. Golnik, J. Suffczynski, P. Wojnar, J. Kossut, J. A. Gaj, and P. Voisin, Phys. Rev. B, 2007, 75(19): 195340

    ADS  Article  Google Scholar 

  94. 94.

    S. J. Cheng, W. Sheng, and P. Hawrylak, Phys. Rev. B, 2003, 68(23): 235330

    ADS  Article  Google Scholar 

  95. 95.

    A. Babinski, M. Potemski, S. Raymond, J. Lapointe, and Z. R. Wasilewski, Phys. Rev. B, 2006, 74(15): 155301

    ADS  Article  Google Scholar 

  96. 96.

    M. Bayer, A. Kuther, A. Forchel, A. Gorbunov, V. B. Timofeev, F. Schäfer, J. P. Reithmaier, T. L. Reinecke, and S. N. Walck, Phys. Rev. Lett., 1999, 82(8): 1748

    ADS  Article  Google Scholar 

  97. 97.

    G. Medeiros-Ribeiroa, M. V. B. Pinheiro, V. L. Pimentel, and E. Marega, Appl. Phys. Lett., 2002, 80(22): 4229

    ADS  Article  Google Scholar 

  98. 98.

    T. P. M. Alegre, F. G. G. Hernández, A. L. C. Pereira, and G. Medeiros-Ribeiro, Phys. Rev. Lett., 2006, 97(23): 236402

    ADS  Article  Google Scholar 

  99. 99.

    W. Sheng, S. J. Xu, and P. Hawrylak, Phys. Rev. B, 2008, 77: 241307 (R)

    ADS  Google Scholar 

  100. 100.

    W. Sheng, Appl. Phys. Lett., 2009, 94(12): 123113

    ADS  Article  Google Scholar 

  101. 101.

    W. Sheng and A. Babinski, Phys. Rev. B, 2007, 75(3): 033316

    ADS  Article  Google Scholar 

  102. 102.

    W. Sheng and P. Hawrylak, Phys. Rev. B, 2006, 73(12): 125331

    ADS  Article  Google Scholar 

  103. 103.

    W. Sheng and J. Wang, Phys. Rev. B, 2010, 82(7): 073308

    ADS  Article  Google Scholar 

  104. 104.

    K. Chang and J. B. Xia, Solid State Commun., 1997, 104(6): 351

    ADS  Article  Google Scholar 

  105. 105.

    P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G. Cullis, G. Hill, and J. C. Clark, Phys. Rev. Lett., 2000, 84(4): 733

    ADS  Article  Google Scholar 

  106. 106.

    K. Kowalik, O. Krebs, A. Lemaître, S. Laurent, P. Senellart, P. Voisin, and J. A. Gaj, Appl. Phys. Lett., 2005, 86(4): 041907

    ADS  Article  Google Scholar 

  107. 107.

    M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, Appl. Phys. Lett., 2007, 91(5): 051904

    ADS  Article  Google Scholar 

  108. 108.

    T. Nakaoka, S. Tarucha, and Y. Arakawa, Phys. Rev. B, 2007, 76(4): 041301R

    ADS  Article  Google Scholar 

  109. 109.

    M. F. Doty, M. Scheibner, I. V. Ponomarev, E. A. Stinaff, A. S. Bracker, V. L. Korenev, T. L. Reinecke, and D. Gammon, Phys. Rev. Lett., 2006, 97(19): 197202

    ADS  Article  Google Scholar 

  110. 110.

    W. Sheng, Appl. Phys. Lett., 2010, 96(13): 133102

    ADS  Article  Google Scholar 

  111. 111.

    W. Sheng, Appl. Phys. Lett., 2009, 95(11): 113105

    ADS  Article  Google Scholar 

  112. 112.

    T. Andlauer and P. Vogl, Phys. Rev. B, 2009, 79(4): 045307

    ADS  Article  Google Scholar 

  113. 113.

    K. Chang, J. B. Xia, and F. M. Peeters, Appl. Phys. Lett., 2003, 82(16): 2661

    ADS  Article  Google Scholar 

  114. 114.

    M. Korkusinski, M. E. Reimer, R. L. Williams, and P. Hawrylak, Phys. Rev. B, 2009, 79(3): 035309

    ADS  Article  Google Scholar 

  115. 115.

    R. L. Williams, G. C. Aers, J. Lefebvre, P. J. Poole, and D. Chithrani, Physica E, 2002, 13(2–4): 1200

    ADS  Article  Google Scholar 

  116. 116.

    M. E. Reimer, D. Dalacu, J. Lapointe, P. J. Poole, D. Kim, G. C. Aers, W. R. McKinnon, and R. L. Williams, Appl. Phys. Lett., 2009, 94(1): 011108

    ADS  Article  Google Scholar 

  117. 117.

    P. R. Wallace, Phys. Rev., 1947, 71(9): 622

    ADS  MATH  Article  Google Scholar 

  118. 118.

    M. S. Dresselhaus and G. Dresselhaus, Adv. Phys., 1981, 30(2): 139

    ADS  Article  Google Scholar 

  119. 119.

    J. Blinowski, N. H. Hau, C. Rigaux, J. P. Vieren, R. Le Toullec, G. Furdin, A. Hérold, and J. Melin, J. Physique, 1980, 41(1): 47

    Article  Google Scholar 

  120. 120.

    D. M. Hoffman, P. C. Eklund, R. E. Heinz, P. Hawrylak, and K. R. Subbaswamy, Phys. Rev. B, 1985, 31(6): 3973

    ADS  Article  Google Scholar 

  121. 121.

    P. Hawrylak, Solid State Commun., 1987, 63(3): 241

    ADS  Article  Google Scholar 

  122. 122.

    A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys., 2009, 81(1): 109

    ADS  Article  Google Scholar 

  123. 123.

    L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herrero, Nano Lett., 2009, 9(7): 2600

    ADS  Article  Google Scholar 

  124. 124.

    J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, Nano Lett., 2005, 5(2): 287

    ADS  Article  Google Scholar 

  125. 125.

    L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science, 2008, 320(5874): 356

    ADS  Article  Google Scholar 

  126. 126.

    B. Wunsch, T. Stauber, and F. Guinea, Phys. Rev. B, 2008, 77(3): 035316

    ADS  Article  Google Scholar 

  127. 127.

    J. Wurm, A. Rycerz, I. Adagideli, M. Wimmer, K. Richter, and H. U. Baranger, Phys. Rev. Lett., 2009, 102(5): 056806

    ADS  Article  Google Scholar 

  128. 128.

    F. Libisch, C. Stampfer, and J. Burgdorfer, Phys. Rev. B, 2009, 79(11): 115423

    ADS  Article  Google Scholar 

  129. 129.

    J. Lu, P. S. Yeo, C. K. Gan, P. Wu, and K. P. Loh, Nat. Nanotechnol., 2011, 6(4): 247

    ADS  Article  Google Scholar 

  130. 130.

    J. Akola, H. P. Heiskanen, and M. Manninen, Phys. Rev. B, 2008, 77(19): 193410

    ADS  Article  Google Scholar 

  131. 131.

    M. Ezawa, Phys. Rev. B, 2010, 81(20): 201402

    ADS  Article  Google Scholar 

  132. 132.

    P. Potasz, A. D. Güçllü and P. Hawrylak, Phys. Rev. B, 2010, 81(3): 033403

    ADS  Article  Google Scholar 

  133. 133.

    A. D. Güçllü P. Potasz, and P. Hawrylak, Phys. Rev. B, 2010, 82(15): 155445

    ADS  Article  Google Scholar 

  134. 134.

    M. Ezawa, Phys. Rev. B, 2007, 76(24): 245415

    ADS  Article  Google Scholar 

  135. 135.

    J. Fernández-Rossier and J. J. Palacios, Phys. Rev. Lett., 2007, 99(17): 177204

    ADS  Article  Google Scholar 

  136. 136.

    W. L. Wang, S. Meng, and E. Kaxiras, Nano Lett., 2008, 8(1): 241

    ADS  Article  Google Scholar 

  137. 137.

    J. Jung and A. H. MacDonald, Phys. Rev. B, 2009, 79(23): 235433

    ADS  Article  Google Scholar 

  138. 138.

    T. Yamamoto, T. Noguchi, and K. Watanabe, Phys. Rev. B, 2006, 74: 121409 (R)

    ADS  Article  Google Scholar 

  139. 139.

    Z. Z. Zhang, K. Chang, and F. M. Peeters, Phys. Rev. B, 2008, 77(23): 235411

    ADS  Article  Google Scholar 

  140. 140.

    X. Yan, X. Cui, B. S. Li, and L. S. Li, Nano Lett., 2010, 10(5): 1869

    ADS  Article  Google Scholar 

  141. 141.

    M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Phys. Rev. Lett., 2006, 97(26): 266405

    ADS  Article  Google Scholar 

  142. 142.

    M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A. L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, Phys. Rev. Lett., 2008, 101(26): 267601

    ADS  Article  Google Scholar 

  143. 143.

    C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terrés, J. Dauber, S. Engels, S. Schnez, and A. Jacobsen, Front. Phys., 2011, 6(3): 271

    Google Scholar 

  144. 144.

    K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B, 1996, 54(24): 17954

    ADS  Article  Google Scholar 

  145. 145.

    K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B, 1999, 59(12): 8271

    ADS  Article  Google Scholar 

  146. 146.

    B. Wunsch, T. Stauber, F. Sols, and F. Guinea, Phys. Rev. Lett., 2008, 101(3): 036803

    ADS  Article  Google Scholar 

  147. 147.

    L. Yang, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett., 2008, 101(18): 186401

    ADS  Article  Google Scholar 

  148. 148.

    T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science, 2006, 313(5789): 951

    ADS  Article  Google Scholar 

  149. 149.

    E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Neto, Phys. Rev. Lett., 2007, 99(21): 216802

    ADS  Article  Google Scholar 

  150. 150.

    J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nat. Mater., 2008, 7(2): 151

    ADS  Article  Google Scholar 

  151. 151.

    K. F. Mak, C. H. Lui, J. Shan, and T. F. Heinz, Phys. Rev. Lett., 2009, 102(25): 256405

    ADS  Article  Google Scholar 

  152. 152.

    Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature, 2009, 459(7248): 820

    ADS  Article  Google Scholar 

  153. 153.

    R. T. Weitz, M. T. Allen, B. E. Feldman, J. Martin, and A. Yacoby, Science, 2010, 330(6005): 812

    ADS  Article  Google Scholar 

  154. 154.

    E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, J. Phys.: Condens. Matter, 2010, 22(17): 175503

    ADS  Article  Google Scholar 

  155. 155.

    L. M. Zhang, Z. Li, D. N. Basov, M. M. Fogler, Z. Hao, and M. C. Martin, Phys. Rev. B, 2008, 78(23): 235408

    ADS  Article  Google Scholar 

  156. 156.

    T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, Phys. Rev. Lett., 2008, 101(9): 096402

    ADS  Article  Google Scholar 

  157. 157.

    O. Voznyy, A. D. Güçllü P. Potasz, and P. Hawrylak, Phys. Rev. B, 2011, 83(16): 165417

    ADS  Article  Google Scholar 

  158. 158.

    K. A. Ritter and J. W. Lyding, Nat. Mater., 2009, 8(3): 235

    ADS  Article  Google Scholar 

  159. 159.

    D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature, 2003, 421(6926): 925

    ADS  Article  Google Scholar 

  160. 160.

    E. H. Lieb, Phys. Rev. Lett., 1989, 62(10): 1201

    MathSciNet  ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei-dong Sheng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sheng, Wd., Korkusinski, M., Güçlü, A.D. et al. Electronic and optical properties of semiconductor and graphene quantum dots. Front. Phys. 7, 328–352 (2012). https://doi.org/10.1007/s11467-011-0200-5

Download citation

Keywords

  • quantum dots
  • electronic structure
  • multiexciton
  • graphene
  • magnetism