Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy

Abstract

Three-dimensional (3D) topological insulators represent a new state of quantum matter with a bulk gap and odd number of relativistic Dirac fermions on the surface. The unusual surface states of topological insulators rise from the nontrivial topology of their electronic structures as a result of strong spin-orbital coupling. In this review, we will briefly introduce the concept of topological insulators and the experimental method that can directly probe their unique electronic structure: angle resolved photoemission spectroscopy (ARPES). A few examples are then presented to demonstrate the unique band structures of different families of topological insulators and the unusual properties of the topological surface states. Finally, we will briefly discuss the future development of topological quantum materials.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Anderson, Basic Notions of Condensed Matter Physics, Reading: Addison-Wesley, 1997

    Google Scholar 

  2. 2.

    K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett., 1980, 45: 494

    ADS  Article  Google Scholar 

  3. 3.

    D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett., 1982, 49: 405

    ADS  Article  Google Scholar 

  4. 4.

    J. Bellissard, A. van Elst, and H. Schulz-Baldes, J. Math. Phys., 1994, 35: 5373

    MathSciNet  ADS  MATH  Article  Google Scholar 

  5. 5.

    X. L. Qi and S. C. Zhang, Phys. Today, 2010, 63: 33

    ADS  Article  Google Scholar 

  6. 6.

    L. Fu and C. L. Kane, Phys. Rev. B, 2007, 76: 045302

    ADS  Article  Google Scholar 

  7. 7.

    X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B, 2008, 78: 195424

    ADS  Article  Google Scholar 

  8. 8.

    C. L. Kane and E. J. Mele, Phys. Rev. Lett., 2005, 95: 226801

    ADS  Article  Google Scholar 

  9. 9.

    C. L. Kane and E. J. Mele, Phys. Rev. Lett., 2005, 95: 146802

    ADS  Article  Google Scholar 

  10. 10.

    B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science, 2006, 314: 1757

    ADS  Article  Google Scholar 

  11. 11.

    M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science, 2007, 318: 766

    ADS  Article  Google Scholar 

  12. 12.

    D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature, 2008, 452: 970

    ADS  Article  Google Scholar 

  13. 13.

    H. Zhang, C. Liu, X. Qi, X. Dai, Z. Fang, and S. Zhang, Nat. Phys., 2009, 5: 438

    Article  Google Scholar 

  14. 14.

    Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. Hor, R. Cava, and M. Z. Hasan, Nat. Phys., 2009, 5: 398

    Article  Google Scholar 

  15. 15.

    D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature, 2009, 460: 1101

    ADS  Article  Google Scholar 

  16. 16.

    Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science, 2009, 325: 178

    ADS  Article  Google Scholar 

  17. 17.

    P. Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan, R. J. Cava, and A. Yazdani, Nature, 2009, 460: 1106

    ADS  Article  Google Scholar 

  18. 18.

    L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett., 2007, 98: 106803

    ADS  Article  Google Scholar 

  19. 19.

    L. Fu, Phys. Rev. Lett., 2009, 103: 266801

    ADS  Article  Google Scholar 

  20. 20.

    A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Phys. Rev. Lett., 2009, 102: 216404

    ADS  Article  Google Scholar 

  21. 21.

    J. E. Moore and L. Balents, Phys. Rev. B, 2007, 75: 121306

    ADS  Article  Google Scholar 

  22. 22.

    R. Roy, Phys. Rev. B, 2009, 79: 195321

    ADS  Article  Google Scholar 

  23. 23.

    X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Phys. Rev. Lett., 2009, 102: 187001

    ADS  Article  Google Scholar 

  24. 24.

    L. Fu and E. Berg, Phys. Rev. Lett., 2010, 105: 097001

    ADS  Article  Google Scholar 

  25. 25.

    Y. L. Chen, J. H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H. H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science, 2010, 329: 659

    ADS  Article  Google Scholar 

  26. 26.

    Y. Hor, J. Checkelsky, D. Qu, N. Ong, and R. Cava, J. Phys. Chem. Solids, 2011, 72: 572

    ADS  Article  Google Scholar 

  27. 27.

    B. Yan, C. X. Liu, H. J. Zhang, C. Y. Yam, X. L. Qi, T. Frauenheim, and S. C. Zhang, Europhys. Lett., 2010, 90: 37002

    ADS  Article  Google Scholar 

  28. 28.

    Y. L. Chen, Z. K. Liu, J. G. Analytis, J. H. Chu, H. J. Zhang, B. H. Yan, S. K. Mo, R. G. Moore, D. H. Lu, I. R. Fisher, S. C. Zhang, Z. Hussain, and Z. X. Shen, Phys. Rev. Lett., 2010, 105: 266401

    ADS  Article  Google Scholar 

  29. 29.

    H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Phys. Rev. B, 2006, 74: 165310

    ADS  Article  Google Scholar 

  30. 30.

    Y. Yao, F. Ye, X. L. Qi, S. C. Zhang, and Z. Fang, Phys. Rev. B, 2007, 75: 041401

    ADS  Article  Google Scholar 

  31. 31.

    H. Lin, R. S. Markiewicz, L. A. Wray, L. Fu, M. Z. Hasan, and A. Bansil, Phys. Rev. Lett., 2010, 105: 036404

    ADS  Article  Google Scholar 

  32. 32.

    S. Chadov, X. Qi, J. Kübler, G. H. Fecher, C. Felser, and S. C. Zhang, Nat. Mater., 2010, 9: 541

    ADS  Article  Google Scholar 

  33. 33.

    H. Lin, L. Wray, Y. Xia, S. Xu, S. Jia, R. Cava, A. Bansil, and M. Hasan, Nat. Mater., 2010, 9: 546

    ADS  Article  Google Scholar 

  34. 34.

    M. P. Seah and W. A. Dench, Surface and Interface Analysis, 1979, 1: 2, http://dx.doi.org/10.1002/sia.740010103

    Article  Google Scholar 

  35. 35.

    A. Becquerel, CR (East Lansing, Mich.), 1839, 9: 561

    Google Scholar 

  36. 36.

    H. Hertz, Annalen der Physik, 1887, 267: 421

    ADS  Article  Google Scholar 

  37. 37.

    A. Einstein, Ann. Phys., 1906, 20: 199

    MATH  Article  Google Scholar 

  38. 38.

    B. Feuerbacher, B. Fitton, and R. Willis, Photoemission and The Electronic Properties of Surfaces, New York (London): Wiley, 1978

    Google Scholar 

  39. 39.

    A. Shitade, H. Katsura, J. Kunes, X. L. Qi, S. C. Zhang, and N. Nagaosa, Phys. Rev. Lett., 2009, 102: 256403

    ADS  Article  Google Scholar 

  40. 40.

    X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B, 2011, 83: 205101

    ADS  Article  Google Scholar 

  41. 41.

    W. Röentgen, Sitzungsberichte der Physikalisch-Medizischen Gesellschaft in Wurzburg, Phys. Medi. Society, 1895, S. 132–141, Band 137

    Google Scholar 

  42. 42.

    A. J. Nicholson, Appl. Opt., 1970, 9: 1155

    ADS  Article  Google Scholar 

  43. 43.

    F. Elder, A. Gurewitsch, R. Langmuir, and H. Pollock, Phys. Rev., 1947, 71: 829

    ADS  Article  Google Scholar 

  44. 44.

    T. H. Maiman, Nature, 1960, 187: 493

    ADS  Article  Google Scholar 

  45. 45.

    A. Lienard, L’Eclairage Elec., 1898, 16: 5

    Google Scholar 

  46. 46.

    D. H. Bilderback, P. Elleaume, and E. Weckert, J. Phys. B, 2005, 38: S773

    ADS  Article  Google Scholar 

  47. 47.

    E. Fermi, Zeits. f. Physik, 1934, 88: 172

    Article  Google Scholar 

  48. 48.

    D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Science, 2009, 323: 919

    ADS  Article  Google Scholar 

  49. 49.

    D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett., 2009, 103: 146401

    ADS  Article  Google Scholar 

  50. 50.

    Z. Alpichshev, J. Analytis, J. Chu, I. Fisher, Y. Chen, Z. Shen, A. Fang, and A. Kapitulnik, Phys. Rev. Lett., 2010, 104: 16401

    ADS  Article  Google Scholar 

  51. 51.

    S. Souma, K. Kosaka, T. Sato, M. Komatsu, A. Takayama, T. Takahashi, M. Kriener, K. Segawa, and Y. Ando, Phys. Rev. Lett., 2011, 106: 216803

    ADS  Article  Google Scholar 

  52. 52.

    S.-Y. Xu, L. A. Wray, Y. Xia, F. von Rohr, Y. S. Hor, J. H. Dil, F. Meier, B. Slomski, J. Osterwalder, M. Neupane, H. Lin, A. Bansil, A. Fedorov, R. J. Cava, and M. Z. Hasan, arXiv: 1101.3985v1, 2011

  53. 53.

    Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S.-Q. Shen, Q. Niu, X.-L. Qi, S.-C. Zhang, X.-C. Ma, and Q.-K. Xue, Nat. Phys., 2010, 6: 584

    Article  Google Scholar 

  54. 54.

    C. X. Liu, H. Zhang, B. Yan, X. L. Qi, T. Frauenheim, X. Dai, Z. Fang, and S. C. Zhang, Phys. Rev. B, 2010, 81: 041307

    ADS  Article  Google Scholar 

  55. 55.

    X. L. Qi, R. Li, J. Zang, and S. C. Zhang, Science, 2009, 323: 1184

    MathSciNet  ADS  MATH  Article  Google Scholar 

  56. 56.

    J. Zang and N. Nagaosa, Phys. Rev. B, 2010, 81: 245125

    ADS  Article  Google Scholar 

  57. 57.

    F. Wilczek, Nature, 2009, 458: 129

    ADS  Article  Google Scholar 

  58. 58.

    L. A. Wray, S.Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y. S. Hor, R. J. Cava, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Phys., 2011, 7: 32

    Article  Google Scholar 

  59. 59.

    G. Wang, X. G. Zhu, Y. Y. Sun, Y. Y. Li, T. Zhang, J. Wen, X. Chen, K. He, L. L. Wang, X. C. Ma, J. F. Jia, S. B. Zhang, and Q. K. Xue, Adv. Mater., 2011, 23: 2929, http://dx.doi.org/10.1002/adma.201100678

    Article  Google Scholar 

  60. 60.

    J. G. Analytis, J. H. Chu, Y. Chen, F. Corredor, R. D. Mc-Donald, Z. X. Shen, and I. R. Fisher, Phys. Rev. B, 2010, 81: 205407

    ADS  Article  Google Scholar 

  61. 61.

    R. A. Hein and E. M. Swiggard, Phys. Rev. Lett., 1970, 24: 53

    ADS  Article  Google Scholar 

  62. 62.

    C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys., 2008, 80: 1083

    ADS  MATH  Article  Google Scholar 

  63. 63.

    D. P. Spitzer and J. A. Sykes, J. Appl. Phys., 1966, 37: 1563

    ADS  Article  Google Scholar 

  64. 64.

    K. Chrissafis, E. S. Vinga, K. M. Paraskevopoulos, and E. K. Polychroniadis, Physica Status Solidi (a), 2003, 196: 515

    ADS  Article  Google Scholar 

  65. 65.

    K. Kurosaki, A. Kosuga, and S. Yamanaka, J. Alloys Comp., 2003, 351: 279

    Article  Google Scholar 

  66. 66.

    K. Kurosaki, H. Uneda, H. Muta, and S. Yamanaka, J. Alloys Comp., 2004, 376: 43

    Article  Google Scholar 

  67. 67.

    K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science, 2004, 303: 818

    ADS  Article  Google Scholar 

  68. 68.

    K. Hoang and S. D. Mahanti, Phys. Rev. B, 2008, 77: 205107

    ADS  Article  Google Scholar 

  69. 69.

    J. Analytis, R. McDonald, S. Riggs, J. Chu, G. Boebinger, and I. Fisher, Nat. Phys., 2010, 6: 960

    Article  Google Scholar 

  70. 70.

    Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B, 2010, 82: 241306

    ADS  Article  Google Scholar 

  71. 71.

    C. Brüne, C. X. Liu, E.G. Novik, E.M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Phys. Rev. Lett., 2011, 106: 126803

    ADS  Article  Google Scholar 

  72. 72.

    R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Science, 2010, 329: 61

    ADS  Article  Google Scholar 

  73. 73.

    F. Wilczek, Nat. Phys., 2009, 5: 614

    Article  Google Scholar 

  74. 74.

    X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B, 2010, 81: 134508

    ADS  Article  Google Scholar 

  75. 75.

    A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B, 2008, 78: 195125

    ADS  Article  Google Scholar 

  76. 76.

    A. Nishide, A. A. Taskin, Y. Takeichi, T. Okuda, A. Kakizaki, T. Hirahara, K. Nakatsuji, F. Komori, Y. Ando, and I. Matsuda, Phys. Rev. B, 2010, 81: 041309 (R)

    ADS  Article  Google Scholar 

  77. 77.

    Y. Y. Li, G. Wang, X. G. Zhu, M. H. Liu, C. Ye, X. Chen, Y. Y. Wang, K. He, L. L. Wang, X. C. Ma, H. J. Zhang, X. Dai, Z. Fang, X. C. Xie, Y. Liu, X. L. Qi, J. F. Jia, S. C. Zhang, and Q. K. Xue, Adv. Mater., 2010, 22: 4002

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yulin Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, Y. Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy. Front. Phys. 7, 175–192 (2012). https://doi.org/10.1007/s11467-011-0197-9

Download citation

Keywords

  • topological insulator (TI)
  • photoemission
  • ARPES