Skip to main content
Log in

Surface dynamics studied by time-dependent tunneling current

  • Mini-Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy (STM) is not only an excellent tool for the study of static geometric structures and electronic structures of surfaces due to its high spatial and energy resolution, but also a powerful tool for the study of surface dynamic behaviors, including surface diffusion, molecular rotation, and surface chemical reactions. Because of the limitation of the scanning speed, the video-STM technique cannot study the fast dynamic processes. Alternatively, a time-dependent tunneling current, I-t curve, method is employed in the research of fast dynamic processes. Usually, this method can detect about 1000 times faster dynamic processes than the traditional video-STM method. When placing the STM tip over a certain interesting position on the sample surface, the changing of tunneling current induced by the surface dynamic phenomena can be recorded as a function of time. In this article, we review the applications of the time-dependent tunneling current method to the studies of surface dynamic phenomena in recent years, especially on surface diffusion, molecular rotation, molecular switching, and chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Roberts and L. E. St. Pierre, Science, 1965, 147: 1529

    Article  ADS  Google Scholar 

  2. K. W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, New York: Wiley, 2008

    Google Scholar 

  3. G. Binnig and H. Rohrer, Helv. Phys. Acta, 1982, 55: 726

    Google Scholar 

  4. I. Brodie, Surf. Sci., 1978, 70: 186

    Article  ADS  Google Scholar 

  5. H. Heinzelmann, F. Watanabe, and G. M. McClelland, Phys. Rev. Lett., 1993, 70: 3611

    Article  ADS  Google Scholar 

  6. I. M. Mikhailovskij, E. V. Sadanov, T. I. Mazilova, V. A. Ksenofontov, and O. A. Velicodnaja, Phys. Rev. B, 2009, 80: 165404

    Article  ADS  Google Scholar 

  7. T. T. Tsong and E. W. Müller, Phys. Rev., 1969, 181: 530

    Article  ADS  Google Scholar 

  8. T. T Tsong and E. W. Müller, Phys. Rev. Lett., 1970, 25: 911

    Article  ADS  Google Scholar 

  9. D. B. Joag, P. L. Kanitkar, M. M. Kanitkar, and V. M. Shukla, Bull. Mater. Sci., 1984, 6: 573

    Article  Google Scholar 

  10. E. Ganz, S. K. Theiss, I. S. Hwang, and J. Golovchenko, Phys. Revs. Lett., 1992, 68: 1567

    Article  ADS  Google Scholar 

  11. B. S. Swartzentruber, Phys. Rev. Lett., 1996, 76: 459

    Article  ADS  Google Scholar 

  12. K. D. Wang, C. Zhang, M.M.T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2005, 94: 036103

    Article  ADS  Google Scholar 

  13. B. C. Stipe, M. A. Rezaei, and W. Ho, Phys. Rev. Lett., 1998, 81: 1263

    Article  ADS  Google Scholar 

  14. G. Dujardin, R. E. Walkup, and P. Avouris, Science, 1992, 255: 1232

    Article  ADS  Google Scholar 

  15. R. Martel, P. Avouris, and I. W. Lyo, Science, 1996, 272: 385

    Article  ADS  Google Scholar 

  16. T. C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, P. Avouris, and R. E. Walkup, Science, 1995, 268: 1590

    Article  ADS  Google Scholar 

  17. K. Stokbro, C. Thirstrup, M. Sakurai, U. Quaade, B. Y. K. Hu, F. Perez-Murano, and F. Grey, Phys. Rev. Lett., 1998, 80: 2618

    Article  ADS  Google Scholar 

  18. D. Riedel, M. L. Bocquet, H. Lesnard, M. Lastapis, N. Lorente, P. Sonnet, and G. Dujardin, J. Am. Chem. Soc., 2009, 131: 7344

    Article  Google Scholar 

  19. A. D. Zhao, Q. X. Li, L. Chen, H. J. Xiang, W. H. Wang, S. Pan, B. Wang, X. D. Xiao, J. L. Yang, J. G. Hou, and Q. S. Zhu, Science, 2005, 309: 1542

    Article  ADS  Google Scholar 

  20. R. Gomer, Rep. Prog. Phys., 1990, 53: 917

    Article  ADS  Google Scholar 

  21. E. G. Seebauer and C. E. Allen, Prog. Surf. Sci., 1995, 49: 265

    Article  ADS  Google Scholar 

  22. T. T. Tsong, Prog. Surf. Sci., 2000, 64: 199

    Article  ADS  Google Scholar 

  23. J. V. Barth, Surf. Sci. Rep., 2000, 40: 75

    Article  ADS  Google Scholar 

  24. T. Ala-Nissila, R. Ferrando, and S. C. Ying, Adv. Phys., 2002, 51: 949

    Article  ADS  Google Scholar 

  25. S. Arrhenius, Zeit. Phys. Chem., 1889, 4: 226

    Google Scholar 

  26. A. Fick, Ann. Phys., 1855, 170: 59

    Google Scholar 

  27. L. S. Darken, Trans. Am. Inst. Mineral. Met. Eng., 1948, 175: 184

    Google Scholar 

  28. R. Lewis and R. Gomer, Nuovo Cimento, 1967, Suppl. I5: 506

    Google Scholar 

  29. R. Gomer, Appl. Phys. A, 1986, 39: 1

    Article  ADS  Google Scholar 

  30. J. E. Reutt-Robey, D. J. Doven, Y. J. Chabal, and S. B. Christman, Phys. Rev. Lett., 1988, 61: 2778

    Article  ADS  Google Scholar 

  31. J. E. Reutt-Robey, D. J. Doven, Y. J. Chabal, and S. B. Christman, J. Chem. Phys., 1990, 93: 9113

    Article  ADS  Google Scholar 

  32. V. J. Kwasniewski and L. D. Schmidt, Surf. Sci., 1992, 274: 329

    Article  ADS  Google Scholar 

  33. H. Froitzheim and M. Schulze, Surf. Sci., 1994, 320: 85

    Article  ADS  Google Scholar 

  34. X. D. Zhu, Th. Rasing, and Y. R. Shen, Phys. Rev. Lett., 1988, 61: 2883

    Article  ADS  Google Scholar 

  35. J. W. Ma, X. D. Xiao, N. J. DiNardo, and M. M. T. Loy, Phys. Rev. B, 1998, 58: 4977

    Article  ADS  Google Scholar 

  36. J. W. Ma, X. D. Xiao, and M. M. T. Loy, Surf. Sci., 1999, 436: L661

    Article  Google Scholar 

  37. J. W. Ma, L. Cai, X. D. Xiao, and M. M. T. Loy, Surf. Sci., 1999, 425: 131

    Article  ADS  Google Scholar 

  38. X. R. Wang, X. Xiao, and Z. Zhang, Surf. Sci., 2002, 512: L361

    Article  ADS  Google Scholar 

  39. G. Binnig, H. Fuchs, and E. Stoll, Surf. Sci., 1986, 169: L295

    Article  Google Scholar 

  40. M. L. Lozano and M. C. Tringides, Europhys. Lett., 1995, 30: 537

    Article  ADS  Google Scholar 

  41. S. Renisch, R. Schuster, J. Wintterlin, and G. Ertl, Phys. Rev. Lett., 1999, 82: 3839

    Article  ADS  Google Scholar 

  42. S. Horch, H. T. Lorensen, S. Helveg, E. Laegsgaard, I. Stensgaard, K. W. Jacobsen, J. K. Nørskov, and F. Besenbacher, Nature (London), 1999, 398: 134

    Article  ADS  Google Scholar 

  43. R. Schaub, E. Wahlstrom, A. Ronnau, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Science, 2003, 299: 377

    Article  ADS  Google Scholar 

  44. E. Wahlstrom, E. K. Vestergaard, R. Schaub, A. Ronnau, M. Vestergaard, E. Laegsgaard, I. Stensgaard, and F. Besenbacher, Science, 2004, 303: 511

    Article  ADS  Google Scholar 

  45. R. M. Trump, R. J. Hamers, and J. E. Demuth, Phys. Rev. B, 1986, 34: 1388

    Article  ADS  Google Scholar 

  46. P. Sobotík, P. Kocán, and I. Ošt’ádal, Surf. Sci., 2003, 537: L442

    Article  Google Scholar 

  47. K. D. Wang, G. Chen, C. Zhang, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2008, 101: 266107

    Article  ADS  Google Scholar 

  48. C. Zhang, G. Chen, K. D. Wang, H. W. Yang, T. Su, C. T. Chan, M. M. T. Loy, and X. D. Xiao, Phys. Rev. Lett., 2005, 94: 176104

    Article  ADS  Google Scholar 

  49. G. Chen, X. D. Xiao, Y. Kawazoe, X. G. Gong, and C. T. Chan, Phys. Rev. B, 2009, 79: 115301

    Article  ADS  Google Scholar 

  50. K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, Surf. Sci., 1985, 164: 367

    Article  ADS  Google Scholar 

  51. J. L. Li, J. F. Jia, X. J. Liang, X. Liu, J. Z. Wang, Q. K. Xue, Z. Q. Li, J. S. Tse, Z. Zhang, and S. B. Zhang, Phys. Rev. Lett., 2002, 88: 066101

    Article  ADS  Google Scholar 

  52. O. Custance, S. Brochard, I. Brihuega, E. Artacho, J. M. Soler, A. M. Baró and J. M. Gómez-Rodríguez, Phys. Rev. B, 2003, 67: 235410

    Article  ADS  Google Scholar 

  53. K. Wu, Y. Fujikawa, T. Nagao, Y. Hasegawa, K. S. Nakayama, Q. K. Xue, E. G. Wang, T. Briere, V. Kumar, Y. Kawazoe, S. B. Zhang, and T. Sakurai, Phys. Rev. Lett., 2003, 91: 126101

    Article  ADS  Google Scholar 

  54. C. M. Chang and C. M. Wei, Phys. Rev. B, 2003, 67: 033309

    Article  ADS  Google Scholar 

  55. P. Hohenberg and W. Kohn, Phys. Rev. B, 1964, 136: 864

    Article  MathSciNet  ADS  Google Scholar 

  56. W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140: 1133

    Article  MathSciNet  ADS  Google Scholar 

  57. K. Cho and E. Kaxiras, Europhys. Lett., 1997, 39: 287

    Article  ADS  Google Scholar 

  58. K. Cho and E. Kaxiras, Surf. Sci., 1998, 396: L261

    Article  Google Scholar 

  59. K. D. Wang, F. F. Ming, Q. Huang, X. Q. Zhang, and X. D. Xiao, Surf. Sci., 2010, 604: 322

    Article  ADS  Google Scholar 

  60. M. A. Henderson, A. Szabo, and J. T. Yates Jr., J. Chem. Phys., 1989, 91: 7245

    Article  ADS  Google Scholar 

  61. M. A. Henderson, A. Szabo, and J. T. Yates Jr., J. Chem. Phys., 1989, 91: 7255

    Article  ADS  Google Scholar 

  62. H. R. Siddiqui, X. Guo, I. Chorkendorff, and J. T. Yates Jr., Surf. Sci., 1987, 191: L813

    Article  ADS  Google Scholar 

  63. D. M. Collins and W. E. Spicer, Surf. Sci., 1977, 69: 85

    Article  ADS  Google Scholar 

  64. J. S. Luo, R. G. Tobin, D. K. Lambert, G. B. Fisher, and C. L. Dimaggio, Surf. Sci., 1992, 274: 53

    Article  ADS  Google Scholar 

  65. X. F. Cui, B. Wang, Z. Wang, T. Huang, Y. Zhao, J. L. Yang, and J. G. Hou, J. Chem. Phys., 2008, 129: 044703

    Article  ADS  Google Scholar 

  66. L. Gao, Q. Liu, Y. Y. Zhang, N. Jiang, H.G. Zhang, Z. H. Cheng, W. F. Qiu, S. X. Du, Y. Q. Liu, W. A. Hofer, and H. J. Gao, Phys. Rev. Lett., 2008, 101: 197209

    Article  ADS  Google Scholar 

  67. Q. Liu, Y. Y. Zhang, N. Jiang, H. G. Zhang, L. Gao, S. X. Du, and H. J. Gao, Phys. Rev. Lett., 2010, 104: 166101

    Article  ADS  Google Scholar 

  68. R. L. Carroll and C. B. Gorman, Angew. Chem. Int. Ed., 2002, 41: 4378

    Article  Google Scholar 

  69. J. A. Stroscio, F. Tavazza, J. N. Crain, R. J. Celotta, and A. M. Chaka, Science, 2006, 313: 948

    Article  ADS  Google Scholar 

  70. Y. F. Wang, X. Ge, G. Schull, R. Berndt, H. Tang, C. Bornholdt, F. Koehler, and Ra. Herges, J. Am. Chem. Soc., 2010, 132: 1196

    Article  Google Scholar 

  71. Y. F. Wang, J. Kroger, R. Berndt, and W. A. Hofer, J. Am. Chem. Soc., 2009, 131: 3639

    Article  Google Scholar 

  72. Y. F. Wang, X. Ge, G. Schull, R. Berndt, C. Bornholdt, F. Koehler, and R. J. Herges, J. Am. Chem. Soc., 2008, 130: 4218

    Article  Google Scholar 

  73. T. Komeda, Y. Kim, Y. Fujita, Y. Sainoo, and M. Kawai, J. Chem. Phys., 2004, 120: 15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-dong Xiao  (肖旭东).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Wang, Kd. & Xiao, Xd. Surface dynamics studied by time-dependent tunneling current. Front. Phys. China 5, 357–368 (2010). https://doi.org/10.1007/s11467-010-0108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-010-0108-5

Keywords

Navigation