Skip to main content
Log in

Law of genome evolution direction: Coding information quantity grows

  • Viewpoint
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

The problem of the directionality of genome evolution is studied. Based on the analysis of C-value paradox and the evolution of genome size, we propose that the function-coding information quantity of a genome always grows in the course of evolution through sequence duplication, expansion of code, and gene transfer from outside. The function-coding information quantity of a genome consists of two parts, p-coding information quantity that encodes functional protein and n-coding information quantity that encodes other functional elements. The evidences on the law of the evolutionary directionality are indicated. The needs of function are the motive force for the expansion of coding information quantity, and the information quantity expansion is the way to make functional innovation and extension for a species. Therefore, the increase of coding information quantity of a genome is a measure of the acquired new function, and it determines the directionality of genome evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrodinger, What is Life? Cambridge: Cambridge University Press, 1944

    Google Scholar 

  2. T. R. Gregory, J. A. Nicol, and H. Tamm, Nucleic Acids Research, 2007, 35 (Database issue): D332

    Article  Google Scholar 

  3. T. R. Gregory, Genome Size Evolution in Animals. In: Evolution of the Genome (Edited by T. R. Gregory), Elsevier Inc., 2005

  4. T. Kouzarides, Cell, 2007, 128: 693

    Article  Google Scholar 

  5. B. Lewin, Gene IX, Jones & Bartlet Publishers, Inc., 2008

  6. L. F. Luo, Journal of Inner Mongolia University, 2005, 36: 653

    Google Scholar 

  7. L. F. Luo, Science in China Ser. C, 2006, 58: 24 (in Chinese)

    Google Scholar 

  8. S. E. Peters, Nature, 2008, 454: 626

    Article  ADS  Google Scholar 

  9. M. Ridley, Evolution, 3rd Ed., Blackwell Publishing, 2004

  10. R. J. Taft, M. Pheasant, and J. S. Mattick, BioEssays, 2007, 29 (3): 288

    Article  Google Scholar 

  11. B. Lewin, Gene VIII, Pearson Education Inc., 2004

  12. T. R. Gregory and R. DeSalle, Comparative Genomics in Prokaryotes. In: Evolution of the Genome (Edited by T. R. Gregory), Elsevier Inc., 2005

  13. A. Mira, H. Ochman, and N. A. Moran, Trends Genet., 2001, 17: 589

    Article  Google Scholar 

  14. D. A. Petrov, T. A. Sangster, J. S. Johnston, D. L. Hartl, and K. L. Shaw, Science, 2000, 287: 1060

    Article  ADS  Google Scholar 

  15. I. Wapinski, A. Pfeffer, N. Friedman, and A. Regev, Nature, 2007, 449: 54

    Article  ADS  Google Scholar 

  16. D. R. Scannell, K. P. Byrne, J. L. Gordon, S. Wong, and K. H. Wolfe, Nature, 2006, 440: 341

    Article  ADS  Google Scholar 

  17. J.M. Aury, J. Olivier, L. Duret, et al., Nature, 2006,444:171

    Article  ADS  Google Scholar 

  18. D. L. Des Marais and M. D. Ransher, Nature, 2008, 454:762

    ADS  Google Scholar 

  19. I. J. Leitch and M. D. Bennett, Biol. J. Linn. Soc., 2004, 82: 651

    Article  Google Scholar 

  20. H. Ozkan, A. A. Levy, and M. Feldman, Plant Cell, 2001, 13: 1735

    Article  Google Scholar 

  21. R. P. Bininda-Edmonds, M. Cardillo, K. E. Jones, et al., Nature, 2007, 446:507

    Article  ADS  Google Scholar 

  22. X. Xu and M. A. Norell, Nature, 2004, 431: 838

    Article  ADS  Google Scholar 

  23. C. L. Organ, A. M. Shedlock, A. Meade, M. Pagel, and S. V. Edwards, Nature, 2007, 446:180

    Article  ADS  Google Scholar 

  24. M. D. Bennett and I. J. Leitch, Genome Size Evolution in Plants. In: Evolution of the Genome (Edited by T. R. Gregory), Elsevier Inc., 2005

  25. K. M. Devos, J. K. M. Brown, and J. L. Bennetzen, Genome Research, 2002, 12: 1075

    Article  Google Scholar 

  26. J. Filkowski, O. Kowalchuk, and I. Kowalchuk, Plant Sci., 2004, 166: 265

    Article  Google Scholar 

  27. W. Deng, X. Zhu, G. Skogerbo, et al., Genome Research, 2006, 16: 20

    Article  Google Scholar 

  28. The ENCODE Project Consortium, Nature, 2007, 447: 799

    Article  ADS  Google Scholar 

  29. G. Storz, Science, 2002, 296: 1260

    Article  ADS  Google Scholar 

  30. L. He and G. J. Hannon, Nature Rev. Genetics, 2004, 5: 522

    Article  Google Scholar 

  31. A. G. Matera, R. M. Terns, and M. P. Terns, Nature Reviews, 2007, 8: 209

    Article  Google Scholar 

  32. W. Makalowski, Science, 2003, 300: 1246

    Article  Google Scholar 

  33. I. Wickelgren, Science, 2003, 300: 1646

    Article  Google Scholar 

  34. E. T. Dermitzakis, A. Reymond, N. Scamuffa, C. Ucla, E. Kirkness, C. Rossier, and S. E. Antonarakis, Science, 2003, 302: 1033

    Article  ADS  Google Scholar 

  35. G. Bejerano, M. Pheasant, I. Makunin, S. Stephen, W. J. Kent, J. S. Mattick, and D. Haussler, Science, 2004, 304: 1321

    Article  ADS  Google Scholar 

  36. H. H. Kazazian, Science, 2004, 303: 1626

    Article  ADS  Google Scholar 

  37. C. Nusbaum, M. C. Zody, and M. L. Borowsky, Nature, 2005, 437: 551

    Article  ADS  Google Scholar 

  38. G. Liu, NISC Comparative sequencing Program, and E. Eichler, Genome Research, 2003, 13: 358

    Article  Google Scholar 

  39. A. F. A. Smit, Curr. Opin. Genet. Dev., 1999, 9: 657

    Article  Google Scholar 

  40. H. H. Chou, T. Hayakawa, S. Diaz, et al., Proc. Natl. Acad. Sci. USA, 2002, 99: 11736

    Article  ADS  Google Scholar 

  41. W. Enard, P. Khaitovitch, J. Klose, et al., Science, 2002, 296: 340

    Article  ADS  Google Scholar 

  42. H. Winter, L. Langbein, M. Krawczak, et al., Human Genet., 2001, 108: 37

    Article  Google Scholar 

  43. L. Patthy, Protein Evolution, Oxford: Blackwell Science, 1999

    Google Scholar 

  44. B. Charlesworth, P. Sniegowshi, and W. Stephan, Nature, 1994, 371: 215

    Article  ADS  Google Scholar 

  45. L. F. Luo, Physical Aspects on Life Evolution, Shanghai: Shanghai Science & Technology Pub., 2000 (in Chinese)

    Google Scholar 

  46. T. C. Stadtman, Ann. Rev. Biochem., 1996, 65: 83

    Article  Google Scholar 

  47. F. Clark and T. A. Thanaraj, Human Molecular Genetics, 2002, 11(4): 451

    Article  Google Scholar 

  48. L. R. Zhang and L. F. Luo, Nucleic Acids Research, 2003, 31: 6214

    Article  Google Scholar 

  49. W. H. Li, Molecular Evolution, Massachusetts: Sinauer Associates, 1997

    Google Scholar 

  50. International Human Genome Sequencing Consortium, Nature, 2001, 409: 860

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liao-fu Luo  (罗辽复).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Lf. Law of genome evolution direction: Coding information quantity grows. Front. Phys. China 4, 241–251 (2009). https://doi.org/10.1007/s11467-009-0014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-009-0014-x

Keywords

PACS numbers

Navigation