Skip to main content
Log in

Theory of bio-energy transport in protein molecules and its experimental evidences as well as applications (I)

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

A new theory of bio-energy transport along protein molecules, where energy is released by the hydrolysis of adenosine triphosphate (ATP), has recently been proposed for some physical and biological reasons. In this theory, Davydov’s Hamiltonian and wave function of the systems are simultaneously improved and extended. A new interaction has been added into the original Hamiltonian. The original wave function of the excitation state of single particles has been replaced by a new wave function of the two-quanta quasi-coherent state. In such case, bio-energy is carried and transported by the new soliton along protein molecular chains. The soliton is formed through the self-trapping of two excitons interacting with amino acid residues. The exciton is generated by the vibration of amide-I (C=O stretching) arising from the energy of the hydrolysis of ATP. The properties of the soliton are extensively studied by analytical methods and its lifetime for a wide range of parameter values relevant to protein molecules is calculated using the nonlinear quantum perturbation theory. The life-time of the new soliton at the biological temperature of 300 K is large enough and belongs to the order of 10−10 s or τ/τ 0 ⩾ 700. The different properties of the new soliton are further studied. The results show that the new soliton in the new model is a better carrier of bio-energy transport and it can play an important role in biological processes. This model is a candidate of the bio-energy transport mechanism in protein molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szent-Gyorgy A., Nature, 1941, 149: 157

    ADS  Google Scholar 

  2. Szent-Gyorgy A., Science, 1941, 93: 609

    Article  ADS  Google Scholar 

  3. Bakhshi A. K., Otto P., Ladik J., and Seel M., Chem. Phys., 1986, 20: 687

    Google Scholar 

  4. Davydov A. S., Theor J. Biol. 1973, 38: 559

    Article  Google Scholar 

  5. Davydov A. S., Phys. Scr., 1979, 2: 387

    Article  ADS  MathSciNet  Google Scholar 

  6. Davydov A. S., Physica D, 1981, 3:1

    Article  ADS  MathSciNet  Google Scholar 

  7. Davydov A. S., Sov. Phys. USP., 1982, 25:898

    Article  MathSciNet  ADS  Google Scholar 

  8. Davydov A. S., Biology and quantum mechanics, New York: Pergamon, 1982

    Google Scholar 

  9. Davydov A. S., The solitons in molecular systems, Dordrecht: Reidel, 1985, 2nd ed., 1991

    MATH  Google Scholar 

  10. Davydov A. S. and Kislukha N. I., Phys. Stat. Sol. (b), 1973, 59: 465

    Article  Google Scholar 

  11. Davydov A. S. and Kislukha N. I., Phys. Stat. Sol. (b), 1977, 75:735

    Article  Google Scholar 

  12. Brizhik L. S. and Davydov A. S., Phys. Stat. Sol. (b), 1983, 115: 615

    Article  MathSciNet  Google Scholar 

  13. Scott A. C., Phys. Rev. A, 1982, 26: 578

    Article  ADS  MathSciNet  Google Scholar 

  14. Scott A. C., Phys. Rev. A, 1983, 27: 2767

    Article  ADS  MathSciNet  Google Scholar 

  15. Scott A. C., Phys. Scr., 1982, 25: 651

    Article  MATH  ADS  Google Scholar 

  16. Scott A. C., Phys. Scr., 1984, 29: 279

    Article  ADS  Google Scholar 

  17. Scott A. C., Phys. Rep., 1992, 217: 1

    Article  ADS  Google Scholar 

  18. Scott A. C., Physica D, 1990, 51: 333

    Article  ADS  Google Scholar 

  19. Brown D. W., West B. J., and Lindenberg K., Phys. Rev. A, 1986, 33: 4104; Brown D. W., Lindenberg K., and West B. J., ibid, B, 1987, 35: 6169

    Article  ADS  MathSciNet  Google Scholar 

  20. Brown D. W., Lindenberg K., and West B. J., Phys. Rev. Lett., 1986, 57: 234

    Article  ADS  Google Scholar 

  21. Brown D. W., Phys. Rev. A, 1988, 37: 5010

    Article  ADS  MathSciNet  Google Scholar 

  22. Brown D. W. and Ivie Z., Phys. Rev. B, 1989, 40: 9876

    Article  ADS  Google Scholar 

  23. Ivie Z. and Brown D. W., Phys. Rev. Lett., 1989, 63: 426

    Article  ADS  Google Scholar 

  24. Skrinjar M. J., Kapor D. W., and Stojanovic S. D., Phys. Rev. A, 1988, 38: 6402; ibid, B, 1989, 40: 1984

    Article  ADS  Google Scholar 

  25. Skrinjar M. J., Kapor D. W., and Stojanovic S. D., Phys. Lett. A, 1988, 133: 489

    Article  ADS  Google Scholar 

  26. Skrinjar M. J., Kapor D. W., and Stojanovic S. D., Phys. Scr., 1988, 39: 658

    Article  ADS  Google Scholar 

  27. Pang X.-F. Chin, J. Biochem. Biophys., 1985, 18:1

    Google Scholar 

  28. Pang X.-F., Chin, J. Atom. Mol. Phys., 1986, 6: 275

    Google Scholar 

  29. Pang X.-F., Chin. J. Appl. Math., 1986, 10: 278

    Google Scholar 

  30. Christiansen P. L. and Scott A.C., Self-trapping of Vibrational Energy, New York: Plenum Press, 1990

    Google Scholar 

  31. Davydov A. S., Zh. Eksp. Teor. Fiz., 1980, 78: 789

    ADS  Google Scholar 

  32. Davydov A. S., Sov. Phys. JETP, 1980, 51: 397

    ADS  Google Scholar 

  33. Davydov A. S., Biol J. Phys., 1991, 18: 111

    Article  MathSciNet  Google Scholar 

  34. Cruzeiro L., Halding J., Christiansen P.L., Skovgard O., and Scott A. C., Phys. Rev. A, 1985, 37: 703

    Google Scholar 

  35. Cruzeiro-Hansson L., Phys. Rev. A, 1992, 45: 4111

    Article  ADS  Google Scholar 

  36. Cruzeiro-Hansson L., Physica D, 1993, 68: 65

    Article  ADS  Google Scholar 

  37. Cruzeiro-Hansson L., Phys. Rev. Lett., 1994, 73: 2927

    Article  ADS  Google Scholar 

  38. Cruzeio-Hansson L., Kenker V. M., and Scott A. C., Phys. Lett. A, 1994, 190: 59

    Article  ADS  Google Scholar 

  39. Cruzeiro-Hansson L., Christiansen P. C., and Scott A. C., Self-trapping of Vibrational Energy, New York: Plenum Press, 1990: 325

    Google Scholar 

  40. Förner W., Phys. Rev. A, 1991, 44: 2694

    Article  ADS  Google Scholar 

  41. Förner W., Physica, D, 1993, 68: 68

    Article  MATH  ADS  Google Scholar 

  42. Förner W., J. Comput. Chem., 1992, 13: 275

    Article  Google Scholar 

  43. Förner W., J. Phys.: Condensed matter, 1991, 3: 1915

    Article  ADS  Google Scholar 

  44. Förner W., J. Phys.: Condensed matter, 1992, 4: 4333

    Article  Google Scholar 

  45. Förner W., J. Phys.: Condensed matter, 1993, 5: 823, 883, 3883, 3897

    Article  ADS  Google Scholar 

  46. Lomdahl P. S. and Kerr W. C., Phys. Rev. Lett., 1985, 55: 1235

    Article  ADS  Google Scholar 

  47. Kerr W. C. and Lomdahl P. S., Phys. Rev. B, 1989, 35: 3629

    Article  ADS  Google Scholar 

  48. Wang X., Brown D. W., and Lindenberg K., Phys. Rev. Lett., 1989, 62: 1792

    Article  ADS  Google Scholar 

  49. Wang X., Brown D. W., and Lindenberg K., Phys. Rev. A, 1988, 37: 3357

    ADS  Google Scholar 

  50. Cottingham J. P. and Schweitzer J. W., Phys. Rev. Lett., 1989, 62: 1792

    Article  ADS  Google Scholar 

  51. Schweitzer J. W., Phys. Rev. A, 1992, 45: 8914

    Article  ADS  Google Scholar 

  52. Hyman J. M., Mclaughlin D. W., and Scott A.C., Physica D, 1981, 3: 23

    Article  ADS  Google Scholar 

  53. Lawrence A. F., McDaniel J. C., Chang D. B., Pierce B. M., and Brirge R. R., Phys. Rev. A, 1986, 33: 1188

    Article  ADS  Google Scholar 

  54. Mechtly B. and Shaw P. B., Phys. Rev. B, 1988, 38: 3075

    Article  ADS  Google Scholar 

  55. Macneil L. and Scott A.C., Phys, Scr., 1984, 29: 284

    Article  ADS  Google Scholar 

  56. Bolterauer H. and Opper M., Z. Phys. B, 1991, 82: 95

    Article  ADS  Google Scholar 

  57. Eibeck J. C., Lomdahl P. S., and Scott A. C., Phys. Rev. B, 1984, 30: 4703

    Article  ADS  Google Scholar 

  58. Förner W., J. Phys.: Condensed matter, 1991, 3: 3235

    Article  ADS  Google Scholar 

  59. Takeno S., Prog. Theor, Phys., 1984, 71: 395

    Article  ADS  MathSciNet  Google Scholar 

  60. Takeno S., Prog. Theor, Phys., 1985, 73: 853

    Article  ADS  Google Scholar 

  61. Takeno S., Prog. Theor, Phys. J. Phys. Soc. Jpn., 1991, 59: 3127

    ADS  Google Scholar 

  62. Pang X.-F., J. Phys. condensed matter, 1990, 2: 9541

    Article  ADS  Google Scholar 

  63. Pang X.-F., Phys. Rev. E, 1994, 49: 4747

    Article  ADS  Google Scholar 

  64. Pang X.-F., European Phys. J. B, 1999, 10: 415

    Article  ADS  Google Scholar 

  65. Pang X.-F., Chin. Phys. Lett., 1993, 10,384: 437, 573

    Google Scholar 

  66. Pang X.-F., Chin. Science Bulletin, 1993, 38,1572: 1665

    Google Scholar 

  67. Pang X.-F., Chin. J. Biophys., 1993, 9:637; 1994, 10:133

    Google Scholar 

  68. Pang X.-F., Acta Math. Sci., 1993, 13: 437; 1996 (suppl.), 16: 1

    MATH  Google Scholar 

  69. Pang X.-F., Acta phys. Sinica, 1993, 42:1856

    Google Scholar 

  70. Pang X.-F., Acta phys. Sinica, 1997, 46: 625

    Google Scholar 

  71. Pang X.-F., Chin. J. Infrared Millimeter Waves, 1993, 12: 377; 1997

    Google Scholar 

  72. Pang X.-F., Chin. J. Infrared Millimeter Waves, 1997, 16: 64, 301

    Google Scholar 

  73. Pang X.-F., Chin. J. Atom. Mol. Phys., 1987, 5, 383

    Google Scholar 

  74. Pang X.-F., Chin. J. Atom. Mol. Phys., 1995, 12:411

    Google Scholar 

  75. Pang X.-F., Chin. J. Atom. Mol. Phys., 1996, 13: 70

    Google Scholar 

  76. Pang X.-F., Chin. J. Atom. Mol. Phys., 1997, 14: 232

    Google Scholar 

  77. Pang X.-F., The Theory for Nonlinear Quantum Mechanics, Chinese Chongqing Press, Chongqing, 1994: 415, 686

    Google Scholar 

  78. Pang X.-F., Acta Phys. Slovaca, 1998, 47: 89

    Google Scholar 

  79. Pang X.-F., J. Phys. Condensed Matter, 2000, 12: 885

    Article  ADS  Google Scholar 

  80. Pang X.-F., Chinese Physics, 2000, 9: 86

    Article  Google Scholar 

  81. Pang X.-F., Phys. Rev. E, 2000, 62: 6989

    Article  ADS  Google Scholar 

  82. Pang X.-F., European Phys. J. B, 2001, 19: 297

    Article  ADS  Google Scholar 

  83. Pang X.-F., Commun. Theor. Phys., 2001, 35: 323, 763; ibid, 2002, 37: 715

    Google Scholar 

  84. Pang X.-F., J. Int. Inf. Mill. waves, 2001, 2: 291

    Article  Google Scholar 

  85. Pang X.-F., J. Phys. Chem. Solids, 2001, 62: 793

    Article  ADS  Google Scholar 

  86. Pang X.-F., Chim. J. BioMed. Engineering, 1999, 8: 39; ibid, 2001, 10: 613

    Google Scholar 

  87. Pang X.-F., Zhang H. W., et al., Phys. Lett. A, 2005, 335: 408

    Article  ADS  MATH  Google Scholar 

  88. Pang X.-F., Zhang H.W., and Luo Y. H., J. Phys.: Condensed matter, 2006, 18: 613

    Article  ADS  Google Scholar 

  89. Pang X.-F., Zhang H. W., Yu J. F., and Luo Y. H., Int. J. Mod. Phys. B, 2005, 19: 4677

    Article  MATH  ADS  Google Scholar 

  90. Pang X.-F., Zhang H. W., Yu J.F., and Luo Y. H., Int. J. Mod. Phys. B, 2006, 20: 3027

    Article  MATH  ADS  Google Scholar 

  91. Pang X.-F., Zhang H.W., and Yu J. F., Int. J. Mod. Phys. B, 2007, 21: 1239

    Article  MATH  Google Scholar 

  92. Pang X.-F. and Luo Y. H., Commun. Theor. Phys., 2004, 41: 470

    Google Scholar 

  93. Pang X.-F. and Luo Y. H., Commun. Theor. Phys., 2005, 43: 367

    Google Scholar 

  94. Pang X.-F. and Zhang H. W., Int. J. Inf. Mill. Waves, 2006, 27: 735

    Article  ADS  Google Scholar 

  95. Pang X.-F. and Chen X. R., Chinese Phys. Lett., 2002, 19: 1096

    Article  ADS  Google Scholar 

  96. Pang X.-F., Yu J. F., and Lao Y. H., Lecture Series on Computer and Computational Sciences, 2004, 1: 578

    Google Scholar 

  97. Pang X.-F. and Feng Y. P., Quantum Mechanics in Nonlinear Systems, New Jersey: World Scientific Publishing Co., 2005: 471

    MATH  Google Scholar 

  98. Föhlich H., Adv. Electron. Phys., 1980, 53: 86

    Google Scholar 

  99. Föhlich H., et al., Coherent Excitation in Biology, Berlin: Springer, 1983

    Google Scholar 

  100. Spatschek K. H. and Mertens F. G., Nonlinear Coherent Structures in Physics and Biology, New York: Plenum Press, 1994

    Google Scholar 

  101. Popp F. A., Li K. H., and Gu Q., Recent Advances in Biophoton Research and its Application, Singapore: World Scientific, 1993

    Google Scholar 

  102. Mae Wan Ho, Popp F. A., and Warnke U., Bioelectrodynamics and Biocommunication, Singapore: World Scientific Publishing Co., 1994

    Google Scholar 

  103. Careri G., Buontempo U., Galluzzi F., Scott A. C., Gratton E., and Shydmsunder E., Phys. Rev. B, 1984, 30: 4689

    Article  ADS  Google Scholar 

  104. Eilbeck J. C., Lomdahl P. S., and Scott A. C., Physica D, 1985, 16: 318

    Article  MATH  ADS  MathSciNet  Google Scholar 

  105. Eilbeck J. C., Lomdahl P. S., and Scott A. C., Phys. Rev. B, 1984, 30: 407

    Article  Google Scholar 

  106. Eilbeck J. C., Lomdahl P. S., and Scott A. C., Phys. Rev. B, 1984, 30: 4703

    Article  ADS  Google Scholar 

  107. Scott A. C., Gratton E., Shamsunder E., and Careri G., Phys. Rev. B, 1985, 52: 5551

    Article  ADS  Google Scholar 

  108. Wang X., Brown D. W., and Lindenberg K., Phys. Rev. B, 1989, 39: 5366

    Article  ADS  Google Scholar 

  109. Wang X., Brown D. W., and Lindenberg K., J. Mol. Liq., 1989, 41: 123

    Article  Google Scholar 

  110. Glanber R. J., Phys. Rev., 1976, 13: 2766

    Google Scholar 

  111. Pang X.-F., Soliton Physics, Chengdu: Chinese Sichuan Science and Technology Press, 2000: 2

    Google Scholar 

  112. Go B.-L. and Pang X.-F., Solitons, Beijing: Chinese Science Press. 1987: 4–38, 340

    Google Scholar 

  113. Bullough P. K. and Caudrey P. J., Soliton New York: Springer, 1982: 80

    Google Scholar 

  114. Young E., Shaw P. B., and Whitfield G., Phys. Rev. B, 1979, 19: 1225

    Article  ADS  Google Scholar 

  115. Venzl G. and Fischer S. F., J. Phys. Chem., 1984, 81: 6090

    Article  Google Scholar 

  116. Nagle J. F., Mille M., and Morowitz H. J., Chem. J. Phys., 1980, 72: 3959

    Article  ADS  Google Scholar 

  117. Wanger M. and Kongeter A., Chem. J. Phys., 1989, 91: 3036

    Article  ADS  Google Scholar 

  118. Eremko A. A., Yu. B. Gaididei, and Vakhnenko A. A., Phys. stat. Sol., (b), 1985, 127: 703

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pang Xiao-feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, Xf. Theory of bio-energy transport in protein molecules and its experimental evidences as well as applications (I). Front. Phys. China 2, 469–493 (2007). https://doi.org/10.1007/s11467-007-0060-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-007-0060-1

Keywords

PACS numbers

Navigation