Skip to main content
Log in

Enhancing the network synchronizability

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

The structural and dynamical properties, particularly the small-world effect and scale-free feature, of complex networks have attracted tremendous interest and attention in recent years. This article offers a brief review of one focal issue concerning the structural and dynamical behaviors of complex network synchronization. In the presentation, the notions of synchronization of dynamical systems on networks, stability of dynamical networks, and relationships between network structure and synchronizability, will be first introduced. Then, various technical methods for enhancing the network synchronizability will be discussed, which are roughly divided into two classes: Structural Modification and Coupling-Pattern Regulation, where the former includes three typical methods—dividing hub nodes, shortening average distances, and deleting overload edges, while the latter mainly is a method of strengthening the hub-nodes’ influence on the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watts D. J. and Strogatz S. H., Nature, 1998, 393: 440

    Article  ADS  Google Scholar 

  2. Barabási A.-L. and Albert R., Science, 1999, 286: 509

    Article  MathSciNet  Google Scholar 

  3. Albert R. and Barabási A.-L., Rev. Mod. Phys., 2002, 74: 47

    Article  ADS  Google Scholar 

  4. Dorogovtsev S. N. and Mendes J. F. F., Adv. Phys., 2002, 51: 1079

    Article  ADS  Google Scholar 

  5. Newman M. E. J., SIAM Review, 2003, 45: 167

    Article  MATH  MathSciNet  Google Scholar 

  6. Boccaletti S., Latora V., Moreno Y., Chavez M., and Hwang D.-U., Phys. Rep., 2006, 424: 175

    Article  ADS  MathSciNet  Google Scholar 

  7. Pastor-Satorras R. and Vespignani A., Phys. Rev, Lett., 2001, 86: 3200

    Article  ADS  Google Scholar 

  8. Yan G., Zhou T., Wang J., Fu Z.-Q., and Wang B.-H., Chin. Phys. Lett., 2005, 22: 510

    Article  ADS  Google Scholar 

  9. Zhou T., Yan G., and Wang B.-H., Phys. Rev. E, 2005, 71: 046141

    Google Scholar 

  10. Motter A. E. and Lai Y.-C., Phys. Rev. E, 2002, 66: 065102

    Google Scholar 

  11. Goh K.-I., Lee D.-S., Kahng B., and Kim D., Phys. Rev. Lett., 2003, 91: 148701

    Google Scholar 

  12. Zhou T. and Wang. B.-H., Chin. Phys. Lett., 2005, 22: 1072

    Article  ADS  Google Scholar 

  13. Tadić B., Thurner S., and Rodgers G. J., Phys. Rev. E, 2004, 69: 036102

    Google Scholar 

  14. Zhao L., Lai Y.-C., Park K, and Ye N., Phys. Rev. E, 2005, 71: 026125

  15. Yan G., Zhou T., Hu B., Fu Z.-Q., and Wang B.-H., Phys. Rev. E, 2006, 73: 046108

    Google Scholar 

  16. Lago-Fernández L. F., Huerta R., Corbacho F., and Sigüenza J. A., Phys. Rev. Lett., 2000, 84: 2758

    Article  ADS  Google Scholar 

  17. Gade P. M. and Hu C.-K., Phys. Rev. E, 2000, 62: 6409

    Article  ADS  Google Scholar 

  18. Hong H., Choi M. Y., and Kim B. J., Phys. Rev. E, 2002, 65: 026139

    Google Scholar 

  19. Barahona M. and Pecora L. M., Phys. Rev. Lett., 2002, 89: 054101

    Google Scholar 

  20. Nishikawa T., Motter A. E., Lai Y.-C., and Hoppensteadt F. C., Phys. Rev. Lett., 2003, 91: 014101

    Google Scholar 

  21. Hong H., Kim B. J., Choi M. Y., and Park H., Phys. Rev. E, 2004, 69: 067105

    Google Scholar 

  22. Donetti L., Hurtado P. I., and Muñoz M. A., Phys. Rev. Lett., 2005, 95: 188701

    Google Scholar 

  23. Zhao M., Zhou T., Wang B.-H., Yan G., Yang H.-J., and Bai W.-J., Physica A, 2006, 371: 773

    Article  ADS  Google Scholar 

  24. Wang B., Tang H.-W., Zhou T., and Xu Z.-L., arXiv: condmat/0512079

  25. Wang X. F. and Chen G., Int. J. Bifurcation Chaos Appl. Sci. Eng., 2002, 12: 187

    Article  Google Scholar 

  26. Wang X. F. and Chen G., IEEE Trans. Circuits and Systems I, 2002, 49: 54

    Article  Google Scholar 

  27. Pecora L. M. and Carrol T. L., Phys. Rev. Lett., 1998, 80: 2109

    Article  ADS  Google Scholar 

  28. Barahona M, and Pecora L. M., Phys. Rev. Lett., 2002, 89: 054101

    Google Scholar 

  29. Hu G., Yang J., and Liu W., Phys. Rev. E, 1998, 58: 4440

    Article  ADS  Google Scholar 

  30. Stefański A., Perlikowski P., and Kapitaniak T., Phys. Rev. E, 2007, 75: 016210

    Google Scholar 

  31. Duan Z., Chen G., and Huang L., arXiv:0706.2899v1 [cs.NI] 20 Jun. 2007

  32. Duan Z., Chen G., and Huang L., arXiv:0706.2990v1 [cs.NI] 20 Jun. 2007

  33. Liu C., Duan Z., Chen G., and Huang L., Physica A, accepted, 2007

  34. Pecora L. M. and Barahona M., Chaos Complexity Lett., 2005, 1: 61

    MATH  Google Scholar 

  35. Nishikawa T. and Motter A. E., Phys. Rev. E, 2006, 73: 065106

    Google Scholar 

  36. Fan Z. P., Complex Networks: From Topology to Dynamics, PhD Thesis, City University of Hong Kong, 2006

  37. Zhao M., Zhou T., Wang B.-H., and Wang W.-X., Phys. Rev. E, 2005, 72: 057102

    Google Scholar 

  38. Barthélemy M., Eur. Phys. J. B, 2004, 38: 163

    Article  ADS  Google Scholar 

  39. Goh K.-I., Kahng B., and Kim D., Phys. Rev. Lett., 2001, 87: 278701

    Google Scholar 

  40. Zhou T., Zhao M., and Wang B.-H., Phys. Rev. E, 2006, 73: 037101

    Google Scholar 

  41. Bondy J. A. and Murty U. S. R., Graph Theory with Applications, MacMillan Press LTD, London and Basingstoke, 1976

    Google Scholar 

  42. Bollobás B., Modern Graph Theory, New York: Springer-Verlag, 1998

    MATH  Google Scholar 

  43. Xu J.-M., Theory and Application of Graphs, Dordrecht: Kluwer Academic, 2003

    MATH  Google Scholar 

  44. Newman M. E. J. and Watts D. J., Phys. Rev. E, 1999, 60: 7332

    Article  ADS  Google Scholar 

  45. Xu J.-M., Topological Structure and Analysis of Interconnection Networks, Dordrecht: Kluwer Academic Publishers, 2001

    MATH  Google Scholar 

  46. Yin C.-Y., Wang W.-X., Chen G., and Wang B.-H., Phys. Rev. E, 2006, 74: 047102

    Google Scholar 

  47. Motter A. E., Zhou C., and Kurths J., Phys. Rev. E, 2005, 71: 016116

    Google Scholar 

  48. Motter A. E., Zhou C., and Kurths J., Europhys. Lett., 2005 69: 334

    Article  ADS  Google Scholar 

  49. Motter A. E., Zhou C., and Kurths J., AIP Conf. Proc., 2005, 776: 201

    Article  ADS  MathSciNet  Google Scholar 

  50. Zhao M., Zhou T., Wang B.-H., Ou Q., and Ren J., Eru. Phys. J. B, 2006, 53: 375

    Article  ADS  Google Scholar 

  51. Chavez M., Hwang D.-U., Amann A., Hentschel H. G. E., and Boccaletti S., Phys. Rev. Lett., 2005, 94: 218701

    Google Scholar 

  52. di Bernardo M., Garofalo F., and Sorrentino F., Int. Bifurca J. & Chaos, to be published

  53. Dorogovtsev S. N., Mendes J. F. F., and Samukhin A. N., Phys. Rev. Lett., 2000, 85: 4633

    Article  ADS  Google Scholar 

  54. Krapivsky P. L. and Redner S., Phys. Rev. E, 2001, 63: 066123

    Google Scholar 

  55. Newman M. E. J., Phys. Rev. Lett., 2002, 89: 208701

    Google Scholar 

  56. Newman M. E. J., Phys. Rev. E, 2003, 67: 026126

    Google Scholar 

  57. Couzin L. D., Krause J., Franks N. R., and Levin S. A. Nature, 2005, 433: 513

    Article  ADS  Google Scholar 

  58. Zhang H.-T., Chen M., and Zhou T., arXiv:0707.3402

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Guan-rong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, M., Chen, Gr., Zhou, T. et al. Enhancing the network synchronizability. Front. Phys. China 2, 460–468 (2007). https://doi.org/10.1007/s11467-007-0058-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-007-0058-8

Keywords

PACS numbers

Navigation