Skip to main content

Quantum secure direct communication and deterministic secure quantum communication

Abstract

In this review article, we review the recent development of quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) which both are used to transmit secret message, including the criteria for QSDC, some interesting QSDC protocols, the DSQC protocols and QSDC network, etc. The difference between these two branches of quantum communication is that DSQC requires the two parties exchange at least one bit of classical information for reading out the message in each qubit, and QSDC does not. They are attractive because they are deterministic, in particular, the QSDC protocol is fully quantum mechanical. With sophisticated quantum technology in the future, the QSDC may become more and more popular. For ensuring the safety of QSDC with single photons and quantum information sharing of single qubit in a noisy channel, a quantum privacy amplification protocol has been proposed. It involves very simple CHC operations and reduces the information leakage to a negligible small level. Moreover, with the one-party quantum error correction, a relation has been established between classical linear codes and quantum one-party codes, hence it is convenient to transfer many good classical error correction codes to the quantum world. The one-party quantum error correction codes are especially designed for quantum dense coding and related QSDC protocols based on dense coding.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Shor P. W., Proc. 35th Annual Symposium on Foundations of Computer Science, 1994: 124

  2. 2.

    Grover L., Phys. Rev. Lett, 1997, 78: 325

    Article  ADS  Google Scholar 

  3. 3.

    Long G. L., Phys. Rev. A, 2001, 64: 022307

    Google Scholar 

  4. 4.

    Feynman R. P., Int. J. Theor. Phys., 1982, 21: 467

    Article  MathSciNet  Google Scholar 

  5. 5.

    Lloyd S., Science, 1996, 273: 1073

    Article  ADS  MathSciNet  Google Scholar 

  6. 6.

    Wang X. Y. and Yu H. B., Lecture Notes in Computer Science, 2005, 3494: 19

    MathSciNet  Article  Google Scholar 

  7. 7.

    Nielsen M. A. and Chuang I. L., Quantum computation and quantum information, Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  8. 8.

    Gisin N., Ribordy G., Tittel W., and Zbinden H., Rev. Mod. Phys., 2002, 74: 145

    Article  ADS  Google Scholar 

  9. 9.

    Vernam G. S., J. Amer. Inst. Elec. Eng., 1926, 45: 109

    Google Scholar 

  10. 10.

    Shimizu K. and Imoto N., Phys. Rev. A, 1999, 60: 157

    Article  ADS  Google Scholar 

  11. 11.

    Beige A., Englert B. G., Kurtsiefer C., and Weinfurter H., Acta Phys. Pol. A, 2002, 101(3): 357

    ADS  Google Scholar 

  12. 12.

    Boström K. and Felbinger T., Phys. Rev. Lett., 2002, 89: 187902

    Google Scholar 

  13. 13.

    Wójcik A., Phys. Rev. Lett., 2003, 90: 157901

    Google Scholar 

  14. 14.

    Cai Q. Y., Phys. Rev. Lett., 2003, 91: 109801

    Google Scholar 

  15. 15.

    Deng F. G., Li X. H., Li C. Y., Zhou P., and Zhou H. Y., Chin. Phys., 2007, 16: 277

    Article  ADS  Google Scholar 

  16. 16.

    Long G. L. and Liu X. S., Phys. Rev. A, 2002, 65: 032302

    Google Scholar 

  17. 17.

    Deng F. G., Long G. L., and Liu X. S., Phys. Rev. A, 2003, 68: 042317

    Google Scholar 

  18. 18.

    Deng F. G. and Long G. L., Phys. Rev. A, 2004, 69: 052319

    Google Scholar 

  19. 19.

    Deng F. G., Li X. H., Li C. Y., Zhou P., and Zhou H. Y., Phys. Lett. A, 2006, 359: 359

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. 20.

    Li X. H., Zhou P., Liang Y. J., Li C. Y., Zhou H. Y., and Deng F. G., Chin. Phys. Lett., 2006, 23: 1080

    Article  ADS  Google Scholar 

  21. 21.

    Wang C., Deng F. G., Li Y. S., Liu X. S., and Long G. L., Phys. Rev. A, 2005, 71: 044305

    Google Scholar 

  22. 22.

    Wang C., Deng F. G., and Long G. L., Opt. Commun., 2005, 253: 15

    Article  ADS  Google Scholar 

  23. 23.

    Li X. H., Li C. Y., Deng F. G., Zhou P., Liang Y. J., and Zhou H. Y., Chin. Phys., 2007, 16(8) (in press)

  24. 24.

    Cai Q. Y. and Li B. W., Phys. Rev. A, 2004, 69: 054301

    Google Scholar 

  25. 25.

    Cai Q. Y. and Li B. W., Chin. Phys. Lett., 2004, 21: 601

    Article  ADS  Google Scholar 

  26. 26.

    Li X. H., Deng F. G., Li C. Y., Liang Y. J., Zhou P., and Zhou H. Y., J. Korean Phys. Soc., 2006, 49: 1354

    Google Scholar 

  27. 27.

    Yan F. L. and Zhang X., Euro. Phys. J. B, 2004, 41: 75

    Article  ADS  MathSciNet  Google Scholar 

  28. 28.

    Gao T., Yan F. L., and Wang Z. X., J. Phys. A, 2005, 38: 5761

    MATH  Article  ADS  MathSciNet  Google Scholar 

  29. 29.

    Man Z. X., Zhang Z. J., and Li Y., Chin. Phys. Lett., 2005, 22: 18

    Article  ADS  Google Scholar 

  30. 30.

    Zhu A. D., Xia Y., Fan Q. B., and Zhang S., Phys. Rev. A, 2006, 73: 022338

    Google Scholar 

  31. 31.

    Li X. H., Deng F. G., and Zhou H. Y., Phys. Rev. A, 2006, 74: 054302

    Google Scholar 

  32. 32.

    Lee H., Lim J., and Yang H., Phys. Rev. A, 2006, 73: 042305

  33. 33.

    Wang J., Zhang Q., and Tang C. J., Phys. Lett. A, 2006, 358: 256

    Article  ADS  MATH  Google Scholar 

  34. 34.

    Wang J., Zhang Q., and Tang C. J., Int. J. Quantum information, 2006, 4: 925

    MATH  Article  Google Scholar 

  35. 35.

    Wang J., Zhang Q., and Tang C. J., Int. J. Mod. Phys. C, 2006, 17: 685

    MATH  Article  ADS  MathSciNet  Google Scholar 

  36. 36.

    Wang H. F., Zhang S., Yeon K. H., and Um C. I., J. Korean Phys. Soc., 2006, 49: 459

    Google Scholar 

  37. 37.

    Ji X. and Zhang S., Chin. Phys., 2006, 15: 1418

    Article  ADS  Google Scholar 

  38. 38.

    Cao H. J. and Song H. S., Chin. Phys. Lett., 2006, 23: 290

    Article  ADS  Google Scholar 

  39. 39.

    Cao H. J., Chen J., and Song H. S., Commun. Theor. Phys., 2006, 45: 271

    Google Scholar 

  40. 40.

    Gao. T., Z. Naturforsch, A, 2004, 59: 597

    Google Scholar 

  41. 41.

    Gao. T. and Yan, F. L., Chin. Phys., 2005, 14: 893

    Article  ADS  Google Scholar 

  42. 42.

    Gao. T., Yan, F. L., and Wang. Z. X., II Nuovo Cimento B, 2004, 119: 313

    ADS  Google Scholar 

  43. 43.

    Gao. T., Yan. F. L., and Wang. Z. X., J. Phys. A: Math. Gen, 2005, 38: 5761

    MATH  Article  ADS  MathSciNet  Google Scholar 

  44. 44.

    Deng F. G., Li X. H., Zhou H. Y., and Zhang Z. J., Phys. Rev. A, 2005, 72: 044302

    Google Scholar 

  45. 45.

    Deng F. G. and Long G. L., Commun. Theor. Phys., 2006, 46: 443

    Google Scholar 

  46. 46.

    Brassard G. and Salrail L., Euro-crypt 193, Lectures Notes in Cumputer Sciences, Vol. 765, New York: Springer-Verlag, 1994: 410

    Google Scholar 

  47. 47.

    Zukowski M., Zeilinger A., Horne M. A., and Ekert A. K., Phys. Rev. Lett., 1993, 71: 4287

    Article  ADS  Google Scholar 

  48. 48.

    Bennett C. H., Brassard G., Popescu S., Schumacher B., Smolin J. A., and Wootters W. K., Phys. Rev. Lett., 1996, 76: 722

    Article  ADS  Google Scholar 

  49. 49.

    Deutsch D., Ekert A., Jozsa R., Macchiavello C. Popescu S., and Sanpera A., Phys. Rev. Lett., 1996, 77: 2818

    Article  ADS  Google Scholar 

  50. 50.

    Deng F. G., Long G. L., Wang Y., and Xiao L., Chin. Phys. Lett., 2004, 21: 2097

    Article  ADS  Google Scholar 

  51. 51.

    Bennett C. H., Brassard G., Crépeau C., Jozsa R, Peres A., and Wootters W. K., Phys. Rev. Lett., 1993, 70: 1895

    MATH  Article  ADS  MathSciNet  Google Scholar 

  52. 52.

    Liu X. S., Long G. L., Tong D. M., and Li F., Phys. Rev. A, 2002, 65: 022304

    Google Scholar 

  53. 53.

    Grudka A. and Wójcik A., Phys. Rev. A, 2002, 66: 014301

    Google Scholar 

  54. 54.

    Yan F. L. and Wang M. Y., Chin. Phys. Lett., 2004, 21: 1195

    Article  ADS  Google Scholar 

  55. 55.

    Bechmann-Pasquinucci H. and Peres A., Phys. Rev. Lett., 2000, 85: 3313

    Article  ADS  MathSciNet  Google Scholar 

  56. 56.

    Li C. Y., Zhou H. Y., Wang Y., and Deng F. G., Chin. Phys. Lett., 2005, 22: 1049

    Article  ADS  Google Scholar 

  57. 57.

    Li C. Y., Li X. H., Deng F. G., Zhou P., Liang Y. J., and Zhou H. Y., Chin. Phys. Lett., 2006, 23: 2896

    Article  ADS  Google Scholar 

  58. 58.

    Deng F. G., Li X. H., Li C. Y., Zhou P., Liang Y. J., and Zhou H. Y., Chin. Phys. Lett., 2006, 23: 1676

    Article  ADS  Google Scholar 

  59. 59.

    Li X. H., Li C. Y., Deng F. G., Zhou P., Liang Y. J., and Zhou H. Y., Chin. Phys. Lett., 2007, 24: 23

    Article  ADS  MATH  Google Scholar 

  60. 60.

    Bennett C. H. and Wiesner S. J., Phys. Rev. Lett., 1992, 69: 2881

    MATH  Article  ADS  MathSciNet  Google Scholar 

  61. 61.

    Bennett C. H., Phys. Rev. Lett, 1992, 68: 3121

    MATH  Article  ADS  MathSciNet  Google Scholar 

  62. 62.

    Deng F. G., Li X. H., Li C. Y., Zhou P., and Zhou H. Y., Phys. Scr., 2007, 76: 25

    Article  ADS  Google Scholar 

  63. 63.

    Chen P., Deng F. G., and Long G. L., Chin. Phys., 2006, 15: 2228

    Article  ADS  Google Scholar 

  64. 64.

    Deng F. G. and Long G. L., Phys. Rev. A, 2003, 68: 042315

    Google Scholar 

  65. 65.

    Bennett C. H., Brassard G., and Mermin N. D., Phys. Rev. Lett., 1992, 68: 557

    MATH  Article  ADS  MathSciNet  Google Scholar 

  66. 66.

    Deng F. G., Li X. H., Li C. Y., Zhou P., and Zhou H. Y., e-print quant-ph/0606008; Chin. Phys., 2007, 16 (in press)

  67. 67.

    Bennett C. H., Brassard G., and Robert J. M., SIAM J. Comput., 1988, 17: 210

    Article  MathSciNet  Google Scholar 

  68. 68.

    Bennett C. H., Brassard G., Crépeau C., and Maurer U M, IEEE Trans. Inf. Theory, 1995, 41: 1915

    MATH  Article  Google Scholar 

  69. 69.

    Bennett C. H. and Brassad G., Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York), 1984: 175

    Google Scholar 

  70. 70.

    Ekert A. K., Phys. Rev. Lett., 1991, 67: 661

    MATH  Article  ADS  MathSciNet  Google Scholar 

  71. 71.

    Yang C. P., Chu S. I., and Han S. Y., Phys. Rev. A, 2004, 70: 022329

    Google Scholar 

  72. 72.

    Bandyopadhyay S., Phys. Rev. A, 2000, 62: 012308

    Google Scholar 

  73. 73.

    Karimipour V., Bahraminasab A., and Bagherinezhad S., Phys. Rev. A, 2002, 65: 042320

    Google Scholar 

  74. 74.

    Cleve R., Gottesman D., and Lo H. K., Phys. Rev. Lett., 1999, 83: 648

    Article  ADS  Google Scholar 

  75. 75.

    Li Y. M., Zhang K. S., and Peng K. C., Phys. Lett., A, 2004, 324: 420

    Article  ADS  MATH  MathSciNet  Google Scholar 

  76. 76.

    Briegel H. J., Dür W., Cirac J. I., and Zoller P., Phys. Rev. Lett. 1998, 81: 5932

    Article  ADS  Google Scholar 

  77. 77.

    Shor P. W., Phys. Rev. A, 1995, 52: R2493

    Google Scholar 

  78. 78.

    Calderbank A. R. and Shor P. W., Phys. Rev. A 1996, 54: 1098

    Article  ADS  Google Scholar 

  79. 79.

    Steane A. M., Proc. R. Soc. London A, 1996, 452: 2551

    MATH  ADS  Article  MathSciNet  Google Scholar 

  80. 80.

    Feng K. Q., Ling S., and Xing C., IEEE Trans. Inf. Theory, 2006, 52: 986

    Article  MathSciNet  Google Scholar 

  81. 81.

    Chen H., Ling S., and Xing C., IEEE Trans. Inf. Theory, 2005, 51: 2915

    Article  MathSciNet  Google Scholar 

  82. 82.

    Bennett C. H., DiVincenzo D. P., Smolin J. A., and Wootters W. K., Phys. Rev. A, 1996, 54: 3824

    Article  ADS  MathSciNet  Google Scholar 

  83. 83.

    Mayers D., Advances in Cryptology-Proceedings of Crypto 96, New York: Springer-Verlag, 1996: 343

    Google Scholar 

  84. 84.

    Biham E., Boyer M., Boykin P. O., et al., Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, New York: ACM Press, 2000: 715

    Google Scholar 

  85. 85.

    Biham E., Boyer M., Boykin P. O., et al., Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, New York: ACM Press, 2000: 715

    Book  Google Scholar 

  86. 86.

    Lo H. K. and Chau H. F., Science, 1999, 283: 2050

    Article  ADS  Google Scholar 

  87. 87.

    Shor P. W. and Preskill J., Phys. Rev. Lett., 2000, 85: 441

    Article  ADS  Google Scholar 

  88. 88.

    Lo H. K., Quantum Information and Computation, 2001, 1: 81

    MATH  MathSciNet  Google Scholar 

  89. 89.

    Gottesman D. and Lo H. K., IEEE Trans. Inf. Theory, 2003, 49: 457

    MATH  Article  MathSciNet  Google Scholar 

  90. 90.

    Chau H. F., Phys. Rev. A, 2002, 66: 060302(R)

  91. 91.

    Hwang W. Y., Wang X. B., Matsumoto K., Kim J., and Lee H. W., Phys. Rev. A, 2003, 67: 012302

    Google Scholar 

  92. 92.

    Wen K. and Long G. L., Phys. Rev. A, 2005, 72: 022336

    Google Scholar 

  93. 93.

    Wen K. and Long G. L., e-print quant-ph/0609207

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Long Gui-lu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Long, Gl., Deng, Fg., Wang, C. et al. Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251–272 (2007). https://doi.org/10.1007/s11467-007-0050-3

Download citation

Keywords

  • quantum secure direct communication
  • deterministic secure quantum communication
  • network
  • quantum privacy amplification
  • one-party quantum error correcting codes

PACS numbers

  • 03.67.Hk
  • 03.65.Ud
  • 42.50.Dv