Skip to main content
Log in

Radiative opacity of plasmas studied by detailed term (level) accounting approaches

  • Review Article
  • Published:
Frontiers of Physics in China Aims and scope Submit manuscript

Abstract

Detailed term and level accounting (DTA and DLA) schemes have been developed to calculate the spectrally resolved and Rosseland and Planck mean opacities of plasmas in local thermodynamic equilibrium. Various physical effects, such as configuration interaction effect (including core-valence electron correlations effect and relativistic effect), detailed line width effect (including the line saturation effect), etc., on the opacity of plasmas have been investigated in detail. Some of these physical effects are less capable or even impossible to be taken into account by statistical models such as unresolved transition arrays, super-transition-array or average atom models. Our detailed model can obtain accurate opacity of plasmas. Using this model, we have systematically investigated the radiative opacities of low, medium and high-Z plasmas under different conditions of temperature and density. For example, for aluminum plasma, in the X-ray region, we demonstrated the effects of autoionization resonance broadening on the opacity for the first time. Furthermore, the relativistic effects play an important role on the opacity as well. Our results are in good agreement with other theoretical ones although better agreement can be obtained after the effects of autoionization resonance broadening and relativity have been considered. Our results also show that the modelling of the opacity is very complicated, since too many physical effects influence the accuracy of opacity.

For medium and high-Z plasmas, however, there are systematic discrepancies unexplained so far between the theoretical and experimental opacities. Here, the theoretical opacities are mainly obtained by statistical models. To clarify the discrepancies, efforts from both sides are needed. From the view-point of theory, however, a DLA method, in which various physical effects can be taken into account, should be useful in resolving the difference. Taking gold plasma as an example, we studied in detail the effects of core-valence electron correlation and line width on the opacity. Our DLA results correctly explained, for the first time, the relative intensity of the two strong absorption peaks located near the photon energy of 70 and 80 eV, which was experimentally observed by Eidmann et al. [Europhys. Lett., 1998, 44: 459].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Storm E., Fusion J. Energy, 1988, 7: 131

    Article  Google Scholar 

  2. Kauffman R. L., et al., Phys. Rev. Lett., 1994, 73: 2320

    Article  ADS  Google Scholar 

  3. Rogers F. J. and Iglesias C. A., Science, 1994, 263: 50

    Article  ADS  Google Scholar 

  4. Iglesias C. A., et al., Astrophys. J., 1995, 445: 855

    Article  ADS  Google Scholar 

  5. Zeng J. L., Study on the radiative opacity of aluminum plasmas using a model based on the Detailed-Term-Accounting Approximation, Changsha: Press of National University of Defense Technology, 2005

    Google Scholar 

  6. Davidson S. J., Foster J. M., Smith C. C., Warburton K. A., and Rose S. J., Appl. Phys. Lett., 1988, 52: 847

    Article  ADS  Google Scholar 

  7. Davidson S. J., Lewis C. L. S., O’Neill D., Rose S. J., Foster J. M., and Smith C. C., Laser Interaction with Matter edited by Velarde G., Minguez E. and Perlado J. M., Singpore: World Scientific, 1989

    Google Scholar 

  8. Perry T. S., Davidson S. J., Serduke F. J. D., Bach D. R., Smith C. C., Foster J. M., Doyas R. J., Ward R. A., Iglesias C. A., Rogers F. J., Abdallah J. Jr., Stewart R. E., Kilkenny J. D., and Lee R. W., Phys. Rev. Lett., 1991, 67: 3784

    Article  ADS  Google Scholar 

  9. Perry T. S., Ward R. A., Bach D. R., Doyas R. J., Hammel B. A., Phillion D. W., Kornblum H. N., Foster J. M., Rosen P. A., Wallace R. J., and Kilkenny J. D., J. Quant. Spectrosc. Radiat. Transfer, 1994, 51: 273

    Article  ADS  Google Scholar 

  10. Iglesias C. A., Chen M. H., McWilliams D. L., Nash J. K., and Rogers F. J., J. Quant. Spectrosc. Radiat. Transfer, 1995, 54: 185

    Article  ADS  Google Scholar 

  11. Foster J. M., Hoarty D. J., Smith C. C., Rosen P. A., Davidson S. J., Rose S. J., Perry T. S., and Serduke F. J. D., Phys. Rev. Lett., 1991, 67: 3255

    Article  ADS  Google Scholar 

  12. Perry T. S., Springer P. T., Fields D. F., Bach D. R., Serduke F. J. D., Iglesias C. A., Rogers F. J., Nash J. K., Chen M. H., Wilson B. G., Goldstein W. H., Rozsynai B., Ward R. A., Kilkenny J. D., Doyas R., Da Silva L. B., Back C. A., Cauble R., Davidson S. J., Foster J. M., Smith C. C., Bar-Shalom A., and Lee R. W., Phys. Rev. E, 1996, 54: 5617

    Article  ADS  Google Scholar 

  13. Winhart G., Eidmann K., Iglesias C.A., Bar-Shalom A., Minguez E., Rickert A., and Rose S. J., J. Quant. Spectrosc. Radiat. Transfer, 1995, 54: 437

    Article  ADS  Google Scholar 

  14. Winhart G., Eidmann K., Iglesias C. A., and Bar-Shalom A., Phys. Rev. E, 1996, 53: R1332

    Article  ADS  Google Scholar 

  15. Kramers H. A., Phil. Mag., 1923, 46: 836

    Google Scholar 

  16. Green J. M., J. Quant. Spectrosc. Radiat. Transfer, 1964, 4: 639

    Article  ADS  Google Scholar 

  17. Bauche-Arnoult C., Bauche J., and Klapisch M., J. Opt. Soc. Am., 1978, 68: 1136

    Article  ADS  Google Scholar 

  18. Bauche J., Bauche-Arnoult C., and Klapisch M., Adv. At. Mol. Phys., 1987, 23: 131

    Article  Google Scholar 

  19. Bar-Shalom A., Oreg J., Goldstein W. H., Shvarts D., and Zigler A., Phys. Rev. A, 1989, 40: 3183

    Article  ADS  Google Scholar 

  20. Abdallah J. Jr. and Clark R. E. H., J. Appl. Phys., 1991, 69: 23

    Article  ADS  Google Scholar 

  21. Iglesias C. A., Nash J. K., Chen M. H., and Rogers F. J., J. Quant. Spectrosc. Radiat. Transfer, 1994, 51: 125

    Article  ADS  Google Scholar 

  22. Zeng J. L., Jin F. T., Yuan J. M., Lu Q. S., and Sun Y. S., Phys. Rev. E, 2000, 62: 7251

    Article  ADS  Google Scholar 

  23. Berrington K. A., Essner W. B., and Norrington P. H., Comput. Phys. Commun., 1995, 92: 290

    Article  ADS  Google Scholar 

  24. Perry T. S., et al., J. Quant. Spectrosc. Radiat. Transfer, 1995, 54: 317

    Article  ADS  Google Scholar 

  25. Eidmann K., Bar-Shalom A., Saemann A., and Winhart G., Europhys. Lett., 1998, 44: 459

    Article  ADS  Google Scholar 

  26. Iglesias C. A., et al., J. Quant. Spectrosc. Radiat. Transfer, 2003, 81: 227

    Article  ADS  Google Scholar 

  27. Iglesias C. A., J. Quant. Spectrosc. Radiat. Transfer, 2006, 99: 295

    Article  ADS  Google Scholar 

  28. Dimitrijevic M. S. and Konjevic N., J. Quant. Spectrosc. Radiat. Transfer, 1980, 24: 451

    Article  ADS  Google Scholar 

  29. Dimitrijevic M. S., Konjevic N., Astron. Astrophys., 1987, 172: 345

    ADS  Google Scholar 

  30. Cowan R. D., Theory of Atomic Spectra, Berkeley: University of California Press, 1981

    Google Scholar 

  31. Heading D. J., Wark J. S., Bennett G. R., and Lee R. W., J. Quant. Spectrosc. Radiat. Transfer, 1995, 54: 167; and references therein.

    Article  ADS  Google Scholar 

  32. Yuan J. M., Phys. Rev. E, 2002, 66: 047401

    Google Scholar 

  33. Yuan J. M., Chin. Phys. Lett., 2002, 19: 1459

    Article  ADS  Google Scholar 

  34. Armstrong B. H., Johnston R. R., Kelly P. S., Dewitt H. E., and Brush S. G., Progress in High Temperature Physics and Chemistry, Oxford: Pergamon, 1966, 1: 169

    Google Scholar 

  35. Fischer C. F., Comput. Phys. Commun., 1991, 64: 369

    Article  ADS  Google Scholar 

  36. Zeng J. L., Yuan J. M., and Lu Q. S., Phys. Rev. E, 2001, 64: 066412

    Google Scholar 

  37. Zeng J. L. and Yuan J. M., Phys. Rev. E, 2002, 66: 016401

    Google Scholar 

  38. Rogers F. J. and Iglesias C. A., Ap. J. Suppl., 1992, 79: 507

    Article  ADS  Google Scholar 

  39. Rose S. J., J. Phys. B, 1992, 25: 1667

    Article  ADS  Google Scholar 

  40. Mínguez E., Serrano J. F., and Gámez M. L., Laser Particle Beams, 1988, 6: 265

    Article  Google Scholar 

  41. Bar-Shalom A., Oreg J., Goldstein W. H., Shvarts D., and Zigler A., Phys. Rev. A, 1989, 40: 3183

    Article  ADS  Google Scholar 

  42. Bar-Shalom A., Oreg J., and Goldstein W. H., J. Quant. Spectrosc. Radiat. Transfer, 1994, 51: 27

    Article  ADS  Google Scholar 

  43. Faussurier G., Blancard C., and Decoster A., Phys. Rev. E, 1997, 56: 3474

    Article  ADS  Google Scholar 

  44. Kilcrease D. P., Abdallah J. Jr., Keady J. J., and Clark R. E. H., J. Phys. B, 1993, 26: L717

    Article  ADS  Google Scholar 

  45. Yang J. M., et al., Phys. Plasmas, 2003, 10: 4881

    Article  ADS  Google Scholar 

  46. Jin F. T., Zeng J. L., and Yuan J. M., Phys. Plasmas, 2004, 11: 4318

    Article  ADS  Google Scholar 

  47. Zeng J. L., Jin F. T., Zhao G., and Yuan J. M., Chin. Phys. Lett., 2003, 20: 863

    ADS  Google Scholar 

  48. Jin F. T., Zeng J. L., and Yuan J. M., Phys. Rev. E, 2003, 68: 066401

    Google Scholar 

  49. Rogers F. J. and Iglesias C. A., Astrophys. J. Suppl. Ser., 1992, 79: 507

    Article  ADS  Google Scholar 

  50. Springer P. T., Wong K. L., Iglesias C. A., Hammer J. H., Porter J. L., Toor A., Goldstein W. H., Wilson B. G., Rogers F. J., Deeney C., Dearborn D. S., Bruns C., Emig J., and Stewart R. E., J. Quant. Spectrosc. Radiat. Transfer, 1997, 58: 927

    Article  ADS  Google Scholar 

  51. Magee N. H., Jr., and Clark R. E. H., see LANL T-4 Opacity Web Page at http://www.t4.lanl.gov

  52. Serduke F. J. D., Emilio Minguez, steven J. Davidson, and Carlos A. Iglesias, J. Quant. Spectrosc. Radiat. Transfer, 2000, 65: 527

    Article  ADS  Google Scholar 

  53. DaSilva L. B., et al., Phys. Rev. Lett., 1992, 69: 438

    Article  ADS  Google Scholar 

  54. Springer P. T., et al., Phys. Rev. Lett., 1992, 69: 3735

    Article  ADS  Google Scholar 

  55. Springer P. T., et al., J. Quant. Spectrosc. Radiat. Transfer, 1994, 51: 371

    Article  ADS  Google Scholar 

  56. Chenais-Popovics C., et al., Astrophys. J. Suppl. Ser., 2000, 127: 275

    Article  ADS  Google Scholar 

  57. Blenski T., Grimaldi A., and Perrot F., Phys. Rev. E, 1997, 55: R4889

    Article  ADS  Google Scholar 

  58. Bauche-Arnoult C., Bauche J., and Klapisch M., Phys. Rev. A, 1985, 31: 2248

    Article  ADS  Google Scholar 

  59. Zeng J. L., Zhao G., and Yuan J. M., Phys. Rev. E, 2004, 70: 027401

    Google Scholar 

  60. Chenais-Popovics C., et al., Phys. Rev. A, 1989, 40: 3194

    Article  ADS  Google Scholar 

  61. Bailey J. E., Arnault P., Blenski T., Dejonghe G., Peyrusse O., MacFarlane J. J., Mancini R. C., Cuneo M. E., Nielsen D. S., and Rochau G. A., J. Quant. Spectrosc. Radiat. Transfer, 2003, 81: 31

    Article  ADS  Google Scholar 

  62. Jin F. T. and Yuan J. M., Phys. Rev. E, 2005, 72: 016404

    Google Scholar 

  63. Zeng J. L., Jin F. T., Yuan J. M., and Lu Q. S., Phys. Rev. E, 2000, 62: 7251

    Article  ADS  Google Scholar 

  64. Iglesias C. A., Nash J. K., Chen M. H., and Rogers F. J., J. Quant. Spectrosc. Radiat. Transfer, 1994, 51: 125

    Article  ADS  Google Scholar 

  65. Jones O. S., et al., Phys. Rev. Lett., 2004, 93: 065002

  66. Dewald E. L., et al., Phys. Rev. Lett., 2005, 95: 215004

    Google Scholar 

  67. Orzechowski T. J., et al., Phys. Rev. Lett., 1996, 77: 3545

    Article  ADS  Google Scholar 

  68. Yan J. and Wu Z. Q., Phys. Rev. E, 2002, 65: 066401

    Google Scholar 

  69. Sun Y. S., Meng X. J., and Zheng S. T., Nucl. Sci. Tech., 1997, 8: 6

    MATH  Google Scholar 

  70. Brandau C., et al., Phys. Rev. Lett., 2003, 91: 073202

  71. Dauvergne D., et al., Phys. Rev. Lett., 2003, 90: 153002

    Google Scholar 

  72. Gu M. F., Astrophys. J., 2003, 582: 1241

    Article  ADS  Google Scholar 

  73. Norrington P. H. and Grant I. P., J. Phys. B, 1987, 20: 4869

    Article  ADS  Google Scholar 

  74. Perry T. S., et al., Phys. Rev. E, 1996, 54L: 5617

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Jian-min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Jl., Jin, Ft. & Yuan, Jm. Radiative opacity of plasmas studied by detailed term (level) accounting approaches. Front. Phys. China 1, 468–489 (2006). https://doi.org/10.1007/s11467-006-0042-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-006-0042-8

Keywords

PACS numbers

Navigation