Frontiers of Physics in China

, Volume 1, Issue 4, pp 449–457 | Cite as

Determination of the gravitational constant G

Review Article

Abstract

A precise knowledge of the Newtonian gravitational constant G has an important role in physics and is of considerable meteorological interest. Although G was the first physical constant to be introduced and measured in the history of science, it is still the least precisely determined of all the fundamental constants of nature. The 2002 CODATA recommended value for G, G = (6.6742 ± 0.0010) × 10−11m3 · kg−1 · s−2, has an uncertainty of 150 parts per million (ppm), much larger than that of all other fundamental constants. Reviewed here is the status of our knowledge of the absolute value of G, methods for determining G, and recent high precision experiments for determining G.

Keywords

gravitational constant fundamental constant 

PACS numbers

04.80.Cc 06.20.Jr 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cavendish H., Phil. Trans. R. Soc. 1798, 88: 467Google Scholar
  2. 2.
    Chen Y. T. and Cook A. H., Gravitational Experiments in the Laboratory, Cambridge: Cambridge University Press, 1993Google Scholar
  3. 3.
    Kolosnitsyn N. I., Meas. Tech, 1992, 35: 1443CrossRefGoogle Scholar
  4. 4.
    Schwarz J. P., Robertson D. S., Niebauer T. M. and Faller J. E., Science, 1998, 282: 2230CrossRefADSGoogle Scholar
  5. 5.
    Gillies G.T., Rep. Prog. Phys., 1997, 60: 151CrossRefADSGoogle Scholar
  6. 6.
    Boys C. V., Phil. Trans. R. Soc. A, 1895, 186: 1ADSCrossRefGoogle Scholar
  7. 7.
    Braun C., Denkschritten der K. Akad, D. Wiss Math. U. Naturwiss, 1897, 64: 187Google Scholar
  8. 8.
    Heyl P. R., J. Res. NBS, 1930, 5: 1243Google Scholar
  9. 9.
    Heyl P. R. and Chrzanowski, P., J. Res. NBS, 1942, 29: 1Google Scholar
  10. 10.
    Cohen E. R. and Taylor B. N., Rev. Mod. Phys., 1987, 59: 1121CrossRefADSGoogle Scholar
  11. 11.
    Luther G. G. and Towler W. R., Phys. Rev. Lett., 1982, 49: 121CrossRefADSGoogle Scholar
  12. 12.
    Michaelis W., Haars H. and Augustin R., Metrologia, 1995, 32: 267CrossRefADSGoogle Scholar
  13. 13.
    Fizgerald M. P. and Armstrong T. R., IEEE Trans. Instrum. Meas., 1995, 44: 494CrossRefADSGoogle Scholar
  14. 14.
    Walesch H., Meyer H., Piel H. and Schurr J., IEEE Trans. Instrum. Meas., 1995, 44: 491CrossRefGoogle Scholar
  15. 15.
    Karagioz O. V. and Izmailov V. P., Meas. Techniques, 1996, 39: 979CrossRefGoogle Scholar
  16. 16.
    Karagioz O. V., Izmaylov V. P. and Gillies G.T., Grav. Cosmol., 1998, 4: 239MATHADSGoogle Scholar
  17. 17.
    Bagley C. H. and Luther G. G., Phys. Rev. Lett., 1997, 78: 3047CrossRefADSGoogle Scholar
  18. 18.
    Schurr J., Notting F. and Kunding W., Phys. Rev. Lett., 1998, 80: 1142CrossRefADSGoogle Scholar
  19. 19.
    Luo J., Hu Z.K., Fu X.H., Fan S.H. and Tang M.X., Phys. Rev. D, 1999, 59: 042001Google Scholar
  20. 20.
    Mohr P. J. and Taylor B. N., Rev. Mod. Phys., 2000, 72: 351CrossRefADSGoogle Scholar
  21. 21.
    Mohr P. J. and Taylor B. N., Rev. Mod. Phys., 2005, 77: 1CrossRefADSGoogle Scholar
  22. 22.
    Gundlach J. H. and Merkowitz S. M., Phys. Rev. Lett., 2000, 85: 2869CrossRefADSGoogle Scholar
  23. 23.
    Quinn T. J., Speake C. C., Richman S. J., Davis R. S. and Picard A., Phys. Rev. Lett., 2001, 87: 111101Google Scholar
  24. 24.
    Schlamminger S., Holzschuh E. and Kündig W., Phys. Rev. Lett., 2002, 89: 161102Google Scholar
  25. 25.
    Armstrong T. R. and Fitzgerald M. P., Phys. Rev. Lett., 2003, 91: 201101Google Scholar
  26. 26.
    Speake C. C. and Gillies G.T. Z. Naturf. A, 1978, 42: 663ADSGoogle Scholar
  27. 27.
    Luo J. and Hu Z. K, Class. Quantum Grav., 2000, 17: 2351MATHCrossRefADSGoogle Scholar
  28. 28.
    Poynting J. H., Proc. Birm. Phil. Soc., 1894, 9: 1Google Scholar
  29. 29.
    Mackenzie A. S., The Laws of Gravitation: Memoires by Sir Isaac Newton, Pierre Bouguer and Henry Cavendish Together with Abstracts of other Important Memoires, New York: American Book Company, 1900Google Scholar
  30. 30.
    de Boer H., Experiments relating to the graviatational constant Proc. Ind. Precision Measurement Conf. (Gaitherssburg) (NBS Special Publ. no 617) ed Taylor B.N. and Phillipps W.D. (Washington, DC: Dept of Commerce) 1981, pp 561–72Google Scholar
  31. 31.
    Gillies G.T., Metrologia, 1987, 24: 1CrossRefADSGoogle Scholar
  32. 32.
    Sanders A. J. and Gillies G. T., Riv. Nuovo Cimento, 1996, 19: 1MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nobili A. M., FPAG scientific assessment of NEWTON proposal, 1993Google Scholar
  34. 34.
    Sanders A. J. and Deeds W. E., Phys. Rev. D, 1992, 46: 489CrossRefADSGoogle Scholar
  35. 35.
    Blaser J. P. et al., STEP-statellite test of the equivalence principle: report on the phase A study ESA/NASA report SCI, 1993, 4: 56ADSGoogle Scholar
  36. 36.
    Fizgerald M. P. and Armstrong T. R., Meas. Sci. Technol., 1999, 10: 439CrossRefADSGoogle Scholar
  37. 37.
    de Boer H., Haars H. and Michaelis W., Metrologia, 1987, 24: 171CrossRefADSGoogle Scholar
  38. 38.
    Reich F., Neue Versuche mit der Drehwaage. Abh. Konigl. Ges. wiss. Matnaturwiss, 1852,. 234: 219Google Scholar
  39. 39.
    Beams J. W., Kuhlthau A.R., Lowry R. A., and Parker H. M., Bull. Am. Phys. Soc., 1965, 10: 249Google Scholar
  40. 40.
    Rose R. D., Parker H. M., Lowry R. A., and Kuhlthau A. R., Phys. Rev. Lett., 1969, 23: 655CrossRefADSGoogle Scholar
  41. 41.
    Speake C. C. and Gillies G. T., Proc. R. Soc. London A 1987, 414: 315ADSCrossRefGoogle Scholar
  42. 42.
    Richaz F. and Krigar-Menzel O., Anhang zu den Abhandlung, 1898Google Scholar
  43. 43.
    McGuirk J.M., Foster G.T., Fixler J.B., Snadden M.J. and Kasevich M.A., Phys. Rev. A, 2002, 65: 033608Google Scholar
  44. 44.
    Fattori, M., Lamporesi, G., Petelski, T., Stuhler, J. & Tino, G. M. Phys. Lett. A, 2003, 318: 184MATHCrossRefADSGoogle Scholar
  45. 45.
    Schurr J., Klein N., Meyer H., Piel H. and Walesch H., Metrologia, 1991, 28: 397CrossRefADSGoogle Scholar
  46. 46.
    Kleinevoß U., Meyer H., Schumacher A. and Hartmann S., Meas. Sci. Technol., 1999, 10: 492CrossRefADSGoogle Scholar
  47. 47.
    Gundlach J.H., Adelberger E. G., Hecked B. R. and Swanson H. E., Phys. Rev. D, 1996, 54: R1256CrossRefADSGoogle Scholar
  48. 48.
    Gundlach J. H., Meas. Sci. Technol., 1999, 10: 454CrossRefADSGoogle Scholar
  49. 49.
    Hu Z. K., Guo J.Q. and. Luo J, Phys. Rev. D, 2005, 71: 127505Google Scholar
  50. 50.
    Hu, Z. K., Luo J. and Hsu H., Phys. Lett. A, 1999, 264: 112CrossRefADSGoogle Scholar
  51. 51.
    Luo J., Hu Z. K. and Hsu H., Rev.Sci.Instrum., 2000, 71: 1524CrossRefADSGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PhysicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations