Skip to main content
Log in

Buckling optimization of curvilinear fiber-reinforced composite structures using a parametric level set method

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Owing to their excellent performance and large design space, curvilinear fiber-reinforced composite structures have gained considerable attention in engineering fields such as aerospace and automobile. In addition to the stiffness and strength of such structures, their stability also needs to be taken into account in the design. This study proposes a level-set-based optimization framework for maximizing the buckling load of curvilinear fiber-reinforced composite structures. In the proposed method, the contours of the level set function are used to represent fiber paths. For a composite laminate with a certain number of layers, one level set function is defined by radial basis functions and expansion coefficients for each layer. Furthermore, the fiber angle at an arbitrary point is the tangent orientation of the contour through this point. In the finite element of buckling, the stiffness and geometry matrices of an element are related to the fiber angle at the element centroid. This study considers the parallelism constraint for fiber paths. With the sensitivity calculation of the objective and constraint functions, the method of moving asymptotes is utilized to iteratively update all the expansion coefficients regarded as design variables. Two numerical examples under different boundary conditions are given to validate the proposed approach. Results show that the optimized curved fiber paths tend to be parallel and equidistant regardless of whether the composite laminates contain holes or not. Meanwhile, the buckling resistance of the final design is significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

]CS-RBF:

Compactly supported radial basis function

FEA:

Finite element analysis

FRC:

Fiber-reinforced composite

MMA:

Method of moving asymptotes

RBF:

Radial basis function

VSCL:

Variable stiffness composite laminate

A :

Matrix of expansion coefficients

b :

Current number of iterations

B b, B m :

Strain–displacement matrics for bending and membrane, respectively

d e,i :

Gradient constraint for the ith layer of the eth element

d i :

Gradient constraint for the ith level set function

d pn,i :

Gradient p-norm constraint for the ith layer

D i :

Elastic matrix related to the fiber angle θe,i for membrane and bending

E 1 :

Elasticity modulus along the fiber orientation

E 2 :

Elasticity modulus perpendicular to the fiber orientation

F :

Force vector

G 12, G 13, G 23 :

Shear moduli in the 12-, 13-, and 23-plane, respectively

g :

Matrix consisting of the partial derivatives of the shape function

G :

Global geometric stiffness matrix

G e :

Geometric stiffness matrix of the eth element

h s :

Support size for CS-RBFs

J :

Objective function

J err :

Error of the objective function value

K :

Global stiffness matrix

K e :

Stiffness matrix of the eth element

\({\boldsymbol{K}}_e^{{\rm{bb}}}\) :

Bending component

\({\boldsymbol{K}}_e^{{\rm{mb}}},{\boldsymbol{K}}_e^{{\rm{bm}}}\) :

Coupling components

\({\boldsymbol{K}}_e^{{\rm{mm}}}\) :

In-plane component

\({\boldsymbol{K}}_e^{{\rm{ss}}}\) :

Shearing component

l :

Total number of layers

n :

Total number of RBFs

N :

Shape function

m :

Total number of elements

M :

Total number of eigenvalues

p :

Power parameter of p-norm function

p j :

Coordinate vector of the jth RBF knot

r :

Support radius of CS-RBF

t :

Total thickness of composite laminate

u e :

Displacement vector of the eth element

U :

Global displacement vector

ν 12 :

Poisson’s ratio in the 12-plane

x :

x-directional coordinate of an arbitrary point

x e :

x-directional coordinate of the center of the eth element

x :

Coordinate vector of an arbitrary point

x e :

Coordinate vector of the center of the eth element

y :

y-directional coordinate of an arbitrary point

y e :

y-directional coordinate of the center of the eth element

z i :

z-directional coordinate of the ith layer

α i,j :

Coefficient of the jth RBF in the ith layer

α max :

Upper bound of the design variables

α min :

Lower bound of the design variables

α i :

Set of coefficients in the ith layer

δ :

Maximum permissible error

ϕ :

Control parameter for constraints

θ e,i :

Fiber angle of the ith layer at the center of the eth element

λ k :

kth eigenvalue

ξ :

Tiny positive number to avoid the division by 0

σ x :

x-directional stress

σ y :

y-directional stress

σ i :

Stress matrix in the ith layer of one element

τ xy :

Shear stress in the xy-plane

φ k :

kth eigenvector

ϕ j :

jth radial basis function

ϕ :

Vector of RBFs

Φi :

ith level set function

Φ :

Vector of level set functions

Ω :

Area of region

Ω e :

Occupied area by the eth element

References

  1. Rajak D K, Pagar D, Menezes P L, Linul E. Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers, 2019, 11(10): 1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang J, Lin G, Vaidya U, Wang H. Past, present and future prospective of global carbon fibre composite developments and applications. Composites Part B: Engineering, 2023, 250: 110463

    Article  CAS  Google Scholar 

  3. Wong J, Altassan A, Rosen D W. Additive manufacturing of fiber-reinforced polymer composites: a technical review and status of design methodologies. Composites Part B: Engineering, 2023, 255: 110603

    Article  CAS  Google Scholar 

  4. Lozano G G, Tiwari A, Turner C, Astwood S. A review on design for manufacture of variable stiffness composite laminates. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(6): 981–992

    Article  CAS  Google Scholar 

  5. Xu Y J, Zhu J H, Wu Z, Cao Y F, Zhao Y B, Zhang W H. A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization. Advanced Composites and Hybrid Materials, 2018, 1(3): 460–477

    Article  Google Scholar 

  6. Marques F E C, Mota A F S d, Loja M A R. Variable stiffness composites: optimal design studies. Journal of Composite Science, 2020, 4(2): 80

    Article  Google Scholar 

  7. Punera D, Mukherjee P. Recent developments in manufacturing, mechanics, and design optimization of variable stiffness composites. Journal of Reinforced Plastics and Composites, 2022, 41(23–24): 917–945

    Article  CAS  Google Scholar 

  8. Sobhani Aragh B, Borzabadi Farahani E, Xu B X, Ghasemnejad H, Mansur W J. Manufacturable insight into modelling and design considerations in fibre-steered composite laminates: state of the art and perspective. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113752

    Article  ADS  MathSciNet  Google Scholar 

  9. Rousseau G, Wehbe R, Halbritter J, Harik R. Automated fiber placement path planning: a state-of-the-art review. Computer-Aided Design & Applications, 2019, 16(2): 172–203

    Article  Google Scholar 

  10. Oromiehie E, Prusty B G, Compston P, Rajan G. Automated fibre placement based composite structures: review on the defects, impacts and inspections techniques. Composite Structures, 2019, 224: 110987

    Article  Google Scholar 

  11. Bakhshi N, Hojjati M. Time-dependent wrinkle formation during tow steering in automated fiber placement. Composites Part B: Engineering, 2019, 165: 586–593

    Article  CAS  Google Scholar 

  12. Bakhshi N, Hojjati M. An experimental and simulative study on the defects appeared during tow steering in automated fiber placement. Composites Part A: Applied Science and Manufacturing, 2018, 113: 122–131

    Article  CAS  Google Scholar 

  13. Peeters D M J, Lozano G, Abdalla M. Effect of steering limit constraints on the performance of variable stiffness laminates. Computers & Structures, 2018, 196: 94–111

    Article  Google Scholar 

  14. Brasington A, Sacco C, Halbritter J, Wehbe R, Harik R. Automated fiber placement: a review of history, current technologies, and future paths forward. Composites Part C: Open Access, 2021, 6: 100182

    Google Scholar 

  15. Plocher J, Panesar A. Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures. Materials & Design, 2019, 183: 108164

    Article  Google Scholar 

  16. Stegmann J, Lund E. Discrete material optimization of general composite shell structures. International Journal for Numerical Methods in Engineering, 2005, 62(14): 2009–2027

    Article  ADS  Google Scholar 

  17. Xia Q, Shi T L. Optimization of composite structures with continuous spatial variation of fiber angle through Shepard interpolation. Composite Structures, 2017, 182: 273–282

    Article  Google Scholar 

  18. Kiyono C Y, Silva E C N, Reddy J N. A novel fiber optimization method based on normal distribution function with continuously varying fiber path. Composite Structures, 2017, 160: 503–515

    Article  Google Scholar 

  19. Ding H Q, Xu B, Li W B, Huang X D. A novel CS-RBFs-based parameterization scheme for the optimization design of curvilinear variable-stiffness composites with manufacturing constraints. Composite Structures, 2022, 299: 116067

    Article  Google Scholar 

  20. Hao P, Yuan X J, Liu C, Wang B, Liu H L, Li G, Niu F. An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 205–238

    Article  ADS  MathSciNet  Google Scholar 

  21. Alhajahmad A, Abdalla M, Gürdal Z. Design tailoring for pressure pillowing using tow-placed steered fibers. Journal of Aircraft, 2008, 45(2): 630–640

    Article  Google Scholar 

  22. Wu Z M, Weaver P M, Raju G, Kim B C. Buckling analysis and optimisation of variable angle tow composite plates. Thin-Walled Structures, 2012, 60: 163–172

    Article  Google Scholar 

  23. van Campen J M J F, Kassapoglou C, Gürdal Z. Generating realistic laminate fiber angle distributions for optimal variable stiffness laminates. Composites Part B: Engineering, 2012, 43(2): 354–360

    Article  CAS  Google Scholar 

  24. Hao P, Liu D C, Wang Y, Liu X, Wang B, Li G, Feng S W. Design of manufacturable fiber path for variable-stiffness panels based on lamination parameters. Composite Structures, 2019, 219: 158–169

    Article  Google Scholar 

  25. Guo Y, Serhat G, Pérez M G, Knippers J. Maximizing buckling load of elliptical composite cylinders using lamination parameters. Engineering Structures, 2022, 262: 114342

    Article  Google Scholar 

  26. Alhajahmad A, Mittelstedt C. Buckling capacity of composite panels with cutouts using continuous curvilinear fibres and stiffeners based on streamlines. Composite Structures, 2022, 281: 114974

    Article  Google Scholar 

  27. Fernandez F, Compel W S, Lewicki J P, Tortorelli D A. Optimal design of fiber reinforced composite structures and their direct ink write fabrication. Computer Methods in Applied Mechanics and Engineering, 2019, 353: 277–307

    Article  ADS  MathSciNet  Google Scholar 

  28. Zhou X Y, Ruan X, Gosling P D. Thermal buckling optimization of variable angle tow fibre composite plates with gap/overlap free design. Composite Structures, 2019, 223: 110932

    Article  Google Scholar 

  29. Kim D H, Choi D H, Kim H S. Design optimization of a carbon fiber reinforced composite automotive lower arm. Composites Part B: Engineering, 2014, 58: 400–407

    Article  CAS  Google Scholar 

  30. Rouhi M, Ghayoor H, Hoa S V, Hojjati M. Multi-objective design optimization of variable stiffness composite cylinders. Composites Part B: Engineering, 2015, 69: 249–255

    Article  Google Scholar 

  31. Wang Z X, Wan Z Q, Groh R M J, Wang X Z. Aeroelastic and local buckling optimisation of a variable-angle-tow composite wing-box structure. Composite Structures, 2021, 258: 113201

    Article  Google Scholar 

  32. Rouhi M, Ghayoor H, Hoa S V, Hojjati M, Weaver P M. Stiffness tailoring of elliptical composite cylinders for axial buckling performance. Composite Structures, 2016, 150: 115–123

    Article  Google Scholar 

  33. Ding H Q, Xu B, Song L, Li W B, Huang X D. Buckling optimization of variable-stiffness composites with multiple cutouts considering manufacturing constraints. Advances in Engineering Software, 2022, 174: 103303

    Article  Google Scholar 

  34. Chu S, Featherston C, Kim H A. Design of stiffened panels for stress and buckling via topology optimization. Structural and Multidisciplinary Optimization, 2021, 64(5): 3123–3146

    Article  MathSciNet  Google Scholar 

  35. Townsend S, Kim H A. A level set topology optimization method for the buckling of shell structures. Structural and Multidisciplinary Optimization, 2019, 60(5): 1783–1800

    Article  MathSciNet  Google Scholar 

  36. Ishida N, Kondoh T, Furuta K, Li H, Izui K, Nishiwaki S. Topology optimization for maximizing linear buckling load based on level set method. Mechanical Engineering Journal, 2022, 9(4): 21–00425

    Article  Google Scholar 

  37. Tian Y, Pu S M, Shi T L, Xia Q. A parametric divergence-free vector field method for the optimization of composite structures with curvilinear fibers. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113574

    Article  ADS  MathSciNet  Google Scholar 

  38. Tian Y, Shi T L, Xia Q. A parametric level set method for the optimization of composite structures with curvilinear fibers. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114236

    Article  ADS  MathSciNet  Google Scholar 

  39. Tian Y, Shi T L, Xia Q. Optimization with manufacturing constraints for composite laminates reinforced by curvilinear fibers through a parametric level set method. Composite Structures, 2023, 321: 117310

    Article  Google Scholar 

  40. Wei P, Li Z Y, Li X P, Wang M Y. An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions. Structural and Multidisciplinary Optimization, 2018, 58(2): 831–849

    Article  MathSciNet  Google Scholar 

  41. Yang K, Tian Y, Shi T L, Xia Q. A level set based density method for optimizing structures with curved grid stiffeners. Computer-Aided Design, 2022, 153: 103407

    Article  MathSciNet  Google Scholar 

  42. Huang Z, Tian Y, Yang K, Shi T L, Xia Q. Shape and generalized topology optimization of curved grid stiffeners through the level set-based density method. Journal of Mechanical Design, 2023, 145(11): 111704

    Article  Google Scholar 

  43. Dash P, Singh B N. Buckling and post-buckling of laminated composite plates. Mechanics Research Communications, 2012, 46: 1–7

    Article  Google Scholar 

  44. Ferreira A J M, Fantuzzi N. MATLAB Codes for Finite Element Analysis: Solids and Structures. 2nd ed. Cham: Springer, 2020

    Book  Google Scholar 

  45. Svanberg K. The method of moving asymptotes—a new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359–373

    Article  ADS  MathSciNet  Google Scholar 

  46. Svanberg K. MMA and GCMMA—Two Methods for Nonlinear Optimization. 2007

  47. Barbero E J. Finite Element Analysis of Composite Materials Using ABAQUS. Boca Raton: CRC Press, 2013

    Book  Google Scholar 

  48. Wang X, Meng Z, Yang B, Cheng C Z, Long K, Li J C. Reliability-based design optimization of material orientation and structural topology of fiber-reinforced composite structures under load uncertainty. Composite Structures, 2022, 291: 115537

    Article  Google Scholar 

  49. Zhang L T, Guo L F, Sun P W, Yan J S, Long K. A generalized discrete fiber angle optimization method for composite structures: bipartite interpolation optimization. International Journal for Numerical Methods in Engineering, 2023, 124(5): 1211–1229

    Article  ADS  MathSciNet  Google Scholar 

  50. Yan J S, Sun P W, Zhang L T, Hu W F, Long K. SGC—a novel optimization method for the discrete fiber orientation of composites. Structural and Multidisciplinary Optimization, 2022, 65(4): 124

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (Grant Nos. 51975227 and 12272144). The authors are grateful to Krister Svanberg for providing the MMA codes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xia.

Ethics declarations

Conflict of Interest Tielin SHI and Qi XIA are members of the Editorial Board of Frontiers of Mechanical Engineering, who were excluded from the peer-review process and all editorial decisions related to the acceptance and publication of this article. Peer-review was handled independently by the other editors to minimise bias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Shi, T. & Xia, Q. Buckling optimization of curvilinear fiber-reinforced composite structures using a parametric level set method. Front. Mech. Eng. 19, 9 (2024). https://doi.org/10.1007/s11465-023-0780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-023-0780-0

Keywords

Navigation