Skip to main content
Log in

Design and evaluation of a novel biopsy needle with hemostatic function

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Biopsy is a method commonly used for early cancer diagnosis. However, bleeding complications of widely available biopsy are risky for patients. Safer biopsy will result in a more accurate cancer diagnosis and a decrease in the risk of complications. In this article, we propose a novel biopsy needle that can reduce bleeding during biopsy procedures and achieve stable hemostasis. The proposed biopsy needle features a compact structure and can be operated easily by left and right hands. A predictive model for puncture force and tip deflection based on coupled Eulerian–Lagrangian (CEL) method is developed. Experimental results show that the biopsy needle can smoothly deliver the gelatin sponge hemostatic plug into the tissue. Although the hemostatic plug bends, the overall delivery process is stable, and the hemostatic plug retains in the tissue without being affected by the withdrawal of the needle. Further experiments indicate that the specimens are well obtained and evenly distributed in the groove of the outer needle without scattering. Our proposed design of biopsy needle possesses strong ability of hemostasis, tissue cutting, and tissue retention. The CEL model accurately predicts the peak of puncture force and produces close estimation of the insertion force at the postpuncture stage and tip position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CEL:

Coupled Eulerian–Lagrangian

FEA:

Finite element analysis

ID:

Inner diameter

OD:

Outer diameter

C 10 :

Shear modulus of the tissue

E n :

Young’s modulus of the needle

f :

Frictional resistance

g 1 g 2 :

Relaxation moduli of parts 1 and 2, respectively

G 0 :

Relaxation modulus G(t) evaluated in t = 0

G i :

Relaxation modulus G(t) evaluated in t = τi

G(t):

Relaxation modulus

J :

Elastic volume ratio

k :

Bulk modulus

K :

Stiffness coefficient of spring A

m :

Mass of the slider and inner needle

p :

Hydrostatic pressure

t :

Cutting time

v :

Cutting velocity

W :

Strain energy density

x :

Displacement of slider

µ :

Shear modulus

λ i :

Shield gravity

σ :

Nominal stress

σi :

Nominal stress component

ε :

Principal stain

ε i :

Principal stain component

v n :

Poisson’s ratio of the needle

ρ n :

Density of the needle

ρ t :

Density of the tissue

τ i (i = 1,2):

Relaxation time

References

  1. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre M F, Allen C, Hansen G, Woodbrook R, Wolfe C, Hamadeh R R, Moore A, Werdecker A, Gessner B D, Te Ao B, McMahon B, Karimkhani C, Yu C H, Cooke G S, Schwebel D C, Carpenter D O, Pereira D M, Nash D, Kazi D S, De Leo D, Plass D, Ukwaja K N, Thurston G D, Jin K Y, Simard E P, Mills E, Park E K, Catalá-López F, deVeber G, Gotay C, Khan G, Hosgood H D III, Santos I S, Leasher J L, Singh J, Leigh J, Jonas J B, Sanabria J, Beardsley J, Jacobsen K H, Takahashi K, Franklin R C, Ronfani L, Montico M, Naldi L, Tonelli M, Geleijnse J, Petzold M, Shrime M G, Younis M, Yonemoto N, Breitborde N, Yip P, Pourmalek F, Lotufo P A, Esteghamati A, Hankey G J, Ali R, Lunevicius R, Malekzadeh R, Dellavalle R, Weintraub R, Lucas R, Hay R, Rojas-Rueda D, Westerman R, Sepanlou S G, Nolte S, Patten S, Weichenthal S, Abera S F, Fereshtehnejad S M, Shiue I, Driscoll T, Vasankari T, Alsharif U, Rahimi-Movaghar V, Vlassov V V, Marcenes W S, Mekonnen W, Melaku Y A, Yano Y, Artaman A, Campos I, MacLachlan J, Mueller U, Kim D, Trillini M, Eshrati B, Williams H C, Shibuya K, Dandona R, Murthy K, Cowie B, Amare A T, Antonio C A, Castañeda-Orjuela C, van Gool C H, Violante F, Oh I H, Deribe K, Soreide K, Knibbs L, Kereselidze M, Green M, Cardenas R, Roy N, Tillmann T, Li Y M, Krueger H, Monasta L, Dey S, Sheikhbahaei S, Hafezi-Nejad N, Kumar G A, Sreeramareddy C T, Dandona L, Wang H D, Vollset S E, Mokdad A, Salomon J A, Lozano R, Vos T, Forouzanfar M, Lopez A, Murray C, Naghavi M. The global burden of cancer 2013. JAMA Oncology, 2015, 1(4): 505–527

    Article  Google Scholar 

  2. Burgard C, Stahl R, de Figueiredo G N, Dinkel J, Liebig T, Cioni D, Neri E, Trumm C G. Percutaneous CT fluoroscopy-guided core needle biopsy of mediastinal masses: technical outcome and complications of 155 procedures during a 10-year period. Diagnostics, 2021, 11(5): 781

    Article  Google Scholar 

  3. James T W, Baron T H. A comprehensive review of endoscopic ultrasound core biopsy needles. Expert Review of Medical Devices, 2018, 15(2): 127–135

    Article  Google Scholar 

  4. Tanisaka Y, Mizuide M, Fujita A, Ogawa T, Araki R, Suzuki M, Katsuda H, Saito Y, Miyaguchi K, Tashima T, Mashimo Y, Yasuda M, Ryozawa S. Comparison of endoscopic ultrasound-guided fine-needle aspiration and biopsy device for lymphadenopathy. Gastroenterology Research and Practice, 2021, 6640862

  5. Kurita A, Yasukawa S, Zen Y, Yoshimura K, Ogura T, Ozawa E, Okabe Y, Asada M, Nebiki H, Shigekawa M, Ikeura T, Eguchi T, Maruyama H, Ueki T, Itonaga M, Hashimoto S, Shiomi H, Minami R, Hoki N, Takenaka M, Itokawa Y, Uza N, Hashigo S, Yasuda H, Takada R, Kamada H, Kawamoto H, Kawakami H, Moriyama I, Fujita K, Matsumoto H, Hanada K, Takemura T, Yazumi S. Comparison of a 22-gauge franseen-tip needle with a 20-gauge forward-bevel needle for the diagnosis of type 1 autoimmune pancreatitis: a prospective, randomized, controlled, multicenter study (COMPAS study). Gastrointestinal Endoscopy, 2020, 91(2): 373–381

    Article  Google Scholar 

  6. Ashat M, Klair J S, Rooney S L, Vishal S J, Jensen C, Sahar N, Murali A R, El-Abiad R, Gerke H. Randomized controlled trial comparing the franseen needle with the fork-tip needle for EUS-guided fine-needle biopsy. Gastrointestinal Endoscopy, 2021, 93(1): 140–150

    Article  Google Scholar 

  7. Hedenström P, Demir A, Khodakaram K, Nilsson O, Sadik R. EUS-guided reverse bevel fine-needle biopsy sampling and open tip fine-needle aspiration in solid pancreatic lesions—a prospective, comparative study. Scandinavian Journal of Gastroenterology, 2018, 53(2): 231–237

    Article  Google Scholar 

  8. de Jong T L, Pluymen L H, van Gerwen D J, Kleinrensink G J, Dankelman J, van den Dobbelsteen J J. PVA matches human liver in needle-tissue interaction. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69: 223–228

    Article  Google Scholar 

  9. Mukai S, Itoi T, Yamaguchi H, Sofuni A, Tsuchiya T, Tanaka R, Tonozuka R, Honjo M, Fujita M, Yamamoto K, Matsunami Y, Asai Y, Kurosawa T, Nagakawa Y. A retrospective histological comparison of EUS-guided fine-needle biopsy using a novel franseen needle and a conventional end-cut type needle. Endoscopic Ultrasound, 2019, 8(1): 50–57

    Article  Google Scholar 

  10. Eiro M, Katoh T, Watanabe T. Risk factors for bleeding complications in percutaneous renal biopsy. Clinical and Experimental Nephrology, 2005, 9(1): 40–45

    Article  Google Scholar 

  11. Csukas D, Urbanics R, Moritz A, Ellis-Behnke R. AC5 Surgical Hemostat™ as an effective hemostatic agent in an anticoagulated rat liver punch biopsy model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11(8): 2025–2031

    Article  Google Scholar 

  12. Lyle M A, Dean D S. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules in patients taking novel oral anticoagulants. Thyroid, 2015, 25(4): 373–376

    Article  Google Scholar 

  13. Fujita M, Shiotani A, Murao T, Ishii M, Yamanaka Y, Nakato R, Matsumoto H, Tarumi K, Manabe N, Kamada T, Hata J, Haruma K. Safety of gastrointestinal endoscopic biopsy in patients taking antithrombotics. Digestive Endoscopy, 2015, 27(1): 25–29

    Article  Google Scholar 

  14. Deng C X, Dogra V, Exner A A, Wang H S, Bhatt S, Zhou Y, Stowe N T, Haaga J R. A feasibility study of high intensity focused ultrasound for liver biopsy hemostasis. Ultrasound in Medicine & Biology, 2004, 30(11): 1531–1537

    Article  Google Scholar 

  15. Viola F, Mauldin F W, Lin-Schmidt X, Haverstick D M, Lawrence M B, Walker W F. A novel ultrasound-based method to evaluate hemostatic function of whole blood. Clinica Chimica Acta, 2010, 411(1–2): 106–113

    Article  Google Scholar 

  16. Alotaibi M, Shrouder-Henry J, Amaral J, Parra D, Temple M, John P, Connolly B. The positive color Doppler sign post biopsy: effectiveness of US-directed compression in achieving hemostasis. Pediatric Radiology, 2011, 41(3): 362–368

    Article  Google Scholar 

  17. Abdulhak A H, Nichols C S. Stick and move: hemostasis for inpatient punch biopsies. Journal of the American Academy of Dermatology, 2021 (in press)

  18. Rahal Junior A, Falsarella P M, Ferreira V T R, Mariotti G C, de Queiroz M R G, Garcia R G. Injecting hemostatic matrix in the path of biopsies: efficacy, potential complications, and the management of such complications. Radiologia Brasileira, 2018, 51(2): 102–105

    Article  Google Scholar 

  19. Wong P, Johnson K J, Warner R L, Merz S I, Kruger G H, Weitzel W F. Performance of biopsy needle with therapeutic injection system to prevent bleeding complications. Journal of Medical Devices, 2013, 7(1): 011002

    Article  Google Scholar 

  20. Su B Q, Yu S, Yan H, Hu Y D, Buzurovic I, Liu D Y, Liu L L, Teng Y L, Tang J, Wang J C, Liu W Y. Biopsy needle system with a steerable concentric tube and online monitoring of electrical resistivity and insertion forces. IEEE Transactions on Biomedical Engineering, 2021, 68(5): 1702–1713

    Article  Google Scholar 

  21. Lapouge G, Poignet P, Troccaz J. Towards 3D ultrasound guided needle steering robust to uncertainties, noise, and tissue heterogeneity. IEEE Transactions on Biomedical Engineering, 2021, 68(4): 1166–1177

    Article  Google Scholar 

  22. Misra S, Reed K B, Schafer B W, Ramesh K T, Okamura A M. Mechanics of flexible needles robotically steered through soft tissue. International Journal of Robotics Research, 2010, 29(13): 1640–1660

    Article  Google Scholar 

  23. Jushiddi M G, Mani A, Silien C, Tofail S A M, Tiernan P, Mulvihill J J E. A computational multilayer model to simulate hollow needle insertion into biological porcine liver tissue. Acta Biomaterialia, 2021, 136: 389–401

    Article  Google Scholar 

  24. Konh B, Honarvar M, Darvish K, Hutapea P. Simulation and experimental studies in needle–tissue interactions. Journal of Clinical Monitoring and Computing, 2017, 31(4): 861–872

    Article  Google Scholar 

  25. Jiang S, Li P, Yu Y, Liu J, Yang Z Y. Experimental study of needle–tissue interaction forces: effect of needle geometries, insertion methods and tissue characteristics. Journal of Biomechanics, 2014, 47(13): 3344–3353

    Article  Google Scholar 

  26. de la Torre R A, Bachman S L, Wheeler A A, Bartow K N, Scott J S. Hemostasis and hemostatic agents in minimally invasive surgery. Surgery, 2007, 142(4): S39–S45

    Article  Google Scholar 

  27. Balakrishnan B, Soman D, Payanam U, Laurent A, Labarre D, Jayakrishnan A. A novel injectable tissue adhesive based on oxidized dextran and chitosan. Acta Biomaterialia, 2017, 53: 343–354

    Article  Google Scholar 

  28. Tompeck A J, Gajdhar A U R, Dowling M, Johnson S B, Barie P S, Winchell R J, King D, Scalea T M, Britt L D, Narayan M. A comprehensive review of topical hemostatic agents: the good, the bad, and the novel. Journal of Trauma and Acute Care Surgery, 2020, 88(1): e1–e21

    Article  Google Scholar 

  29. Stauffer P R, Rossetto F, Prakash M, Neuman D G, Lee T. Phantom and animal tissues for modelling the electrical properties of human liver. International Journal of Hyperthermia, 2003, 19(1): 89–101

    Article  Google Scholar 

  30. Carter F J, Frank T G, Davies P J, McLean D, Cuschieri A. Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis, 2001, 5(4): 231–236

    Article  Google Scholar 

  31. Wineman A. Nonlinear viscoelastic solids—a review. Mathematics and Mechanics of Solids, 2009, 14(3): 300–366

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang J, Yu L T, Wang L, Wang W J, Cui J W. The estimation method of friction in unconfined compression tests of liver tissue. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232(6): 573–587

    Article  Google Scholar 

  33. Estermann S J, Pahr D H, Reisinger A. Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104038

    Article  Google Scholar 

  34. Li L, Maccabi A, Abiri A, Juo Y Y, Zhang W Y, Chang Y J, Saddik G N, Jin L H, Grundfest W S, Dutson E P, Eldredge J D, Benharash P, Candler R N. Characterization of perfused and sectioned liver tissue in a full indentation cycle using a visco-hyperelastic model. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90: 591–603

    Article  Google Scholar 

  35. Liu D, Li G Y, Su C, Zheng Y, Jiang Y X, Qian L X, Cao Y P. Effect of ligation on the viscoelastic properties of liver tissues. Journal of Biomechanics, 2018, 76: 235–240

    Article  Google Scholar 

  36. Zheng Y, Jiang Y X, Cao Y P. A porohyperviscoelastic model for the shear wave elastography of the liver. Journal of the Mechanics and Physics of Solids, 2021, 150: 104339

    Article  MathSciNet  Google Scholar 

  37. Nafo W, Al-Mayah A. Measuring the hyperelastic response of porcine liver tissues in-vitro using controlled cavitation rheology. Experimental Mechanics, 2021, 61(2): 445–458

    Article  Google Scholar 

  38. Pasyar P, Masjoodi S, Montazeriani Z, Makkiabadi B. A digital viscoelastic liver phantom for investigation of elastographic measurements. Computers in Biology and Medicine, 2020, 127: 104078

    Article  Google Scholar 

  39. Matin Z, Moghimi Zand M, Salmani Tehrani M, Wendland B R, Dargazany R. A visco-hyperelastic constitutive model of short-and long-term viscous effects on isotropic soft tissues. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(1): 3–17

    Google Scholar 

  40. Zhang Y D, Li B, Yuan L P. Study on the control method and optimization experiment of prostate soft tissue puncture. IEEE Access: Practical Innovations, Open Solutions, 2020, 8: 218621–218643

    Article  Google Scholar 

  41. Roesthuis R J, van Veen Y R J, Jahya A, Misra S. Mechanics of needle-tissue interaction. In: Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011, 2557–2563

    Google Scholar 

  42. Li A D R, Plott J, Chen L, Montgomery J S, Shih A. Needle deflection and tissue sampling length in needle biopsy. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104: 103632

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Shenzhen Key Laboratory of Robotics Perception and Intelligence (Southern University of Science and Technology, China) (Grant No. ZDSYS20200810171800001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Ren or Max Q.-H. Meng.

Additional information

Conflict of Interest

Authors declare no conflict of interest regarding the submitted manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Ma, Y., Xiao, X. et al. Design and evaluation of a novel biopsy needle with hemostatic function. Front. Mech. Eng. 18, 22 (2023). https://doi.org/10.1007/s11465-022-0738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-022-0738-7

Keywords

Navigation