Skip to main content
Log in

Robust isogeometric topology optimization for piezoelectric actuators with uniform manufacturability

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Piezoelectric actuators have received substantial attention among the industry and academia due to quick responses, such as high output force, high stiffness, high accuracy, and precision. However, the design of piezoelectric actuators always suffers from the emergence of several localized hinges with only one-node connection, which have difficulty satisfying manufacturing and machining requirements (from the over- or under-etching devices). The main purpose of the current paper is to propose a robust isogeometric topology optimization (RITO) method for the design of piezoelectric actuators, which can effectively remove the critical issue induced by one-node connected hinges and simultaneously maintain uniform manufacturability in the optimized topologies. In RITO, the isogeometric analysis replacing the conventional finite element method is applied to compute the unknown electro elastic fields in piezoelectric materials, which can improve numerical accuracy and then enhance iterative stability. The erode—dilate operator is introduced in topology representation to construct the eroded, intermediate, and dilated density distribution functions by non-uniform rational B-splines. Finally, the RITO formulation for the design of piezoelectric materials is developed, and several numerical examples are performed to test the effectiveness and efficiency of the proposed RITO method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAMD:

Continuous approximation of material distribution

DDF:

Density distribution function

FEM:

Finite element method

IGA:

Isogeometric analysis

ITO:

Isogeometric topology optimization

MEMS:

Micro-electro-mechanical system

MMA:

Method of moving asymptotes

NURBS:

Non-uniform rational B-splines

OC:

Optimality criteria

PEMAP:

Piezoelectric material with penalization

PEMAP-P:

Piezoelectric material with penalization and polarization

PZT:

Lead zirconate titanate

RITO:

Robust isogeometric topology optimization

SIMP:

Solid isotropic material penalization

B u :

Strain—displacement matrix

c E :

Stiffness tensor in constant electrical field

D :

Electrical displacement

e :

Number of the finite element

e :

Piezoelectric coefficient matrix

E :

Electrical field

E 0, e 0, ε 0 :

Stiffness, electromechanical coupling, and dielectric coefficients of piezoelectric solids, respectively

E mjn, e min, ε min :

Minimum values of stiffness, electromechanical coupling, and dielectric coefficients of the voids, respectively

f :

Global force imposed at the design domain

f b :

Body force

fd:

Dummy load

f e :

Force in the eth finite element

f s :

Surface traction

G 1 :

Volume constraint for the eroded, intermediate, and dilated topologies

G 2 :

Volume constraint in the intermediate design

G (Φ):

Volume constraint function

h :

Thickness of the piezoelectric plate

i :

Number of control point in the first parametric direction

j :

Number of control point in the second parametric direction

J :

Objective function

J 1 :

Jacobi matrix from the parametric space to physical space

J 2 :

Jacobi matrix from the bi-unit parent element space to parametric space

k uu :

Spring stiffness at the output location

k uu :

Mechanical stiffness matrix

k :

Piezoelectric coupling matrix

k φφ :

Dielectric stiffness matrix

m, n :

Total number of control points in the parametric directions η and ξ, respectively

M j,q :

B-spline basis functions in the second parametric direction

N i,p :

B-spline basis functions in the first parametric direction

p :

Degree of NURBS basis functions in the first parametric direction

p uu, p , p φφ, p po :

Penalization parameters for stiffness, piezoelectricity, dielectric, and polarization, respectively

q :

Degree of NURBS basis functions in the second parametric direction

q c :

Surface charge density accumulated on the electrodes

q e :

Charge density in the eth finite element

\(R_{i,j}^{p,q}\) :

NURBS basis functions in 2D

S :

Mechanical strain

T :

Mechanical stress

u :

Displacement field

u e :

Displacement field in the eth finite element

u i,j :

Displacement at the (i,j)th control point

u out :

Output displacement at the specified locations of the design domain

V max :

Maximum material consumption

ω i,j :

Positive weight at the (i,j)th control point

ξ, ζ :

First and second parametric directions, respectively

ε S :

Permittivity coefficient matrix

φ :

Electric potential

φ e :

Electric potential in the eth finite element

Ωe :

Physical design domain of the eth IGA element

\(\widetilde\Omega \) :

Bi-unit parent element

φ :

Control design variable

φ min :

Positive integer to avoid the occurrence of numerical singularity

\({{\hat \varphi }_{{\rm{eo}}}},{{\hat \varphi }_{{\rm{id}}}},{{\hat \varphi }_{{\rm{do}}}}\) :

Eroded, intermediate, and dilated control design variables, respectively

\({{\tilde \varphi }_{i,j}}\) :

(i, j)th smoothed control design variable

β, η :

First and second parameters in the threshold projection, respectively

η eo, η id, η do :

Different values of the parameter η to define the erode, intermediate and dilate operators in threshold projection, respectively

λ :

Adjoint vector of the dummy load

Φ:

Density distribution function

Φeo, Φid, Φdo :

Eroded, intermediate, and dilated DDFs, respectively Φiso Value of the iso-contour of the DDF

Φtop :

Structural topology

Φ eotop idtop dotop :

Eroded, intermediate, and dilated topologies, respectively

ψ :

Second type of design variables for the polarization

ψ:

Continuous function for the second type of design variable

Ψeo, Ψid, Ψdo :

Eroded, intermediate, and dilated continuous functions for the second type of design variable, respectively

Ψ eotop idtop dotop :

Optimized distributions of the polarization in three eroded, intermediate, and dilated designs, respectively

References

  1. Frecker M I. Recent advances in optimization of smart structures and actuators. Journal of Intelligent Material Systems and Structures, 2003, 14(4–5): 207–216

    Article  Google Scholar 

  2. Adriaens H J M T S, De Koning W L, Banning R. Modeling piezoelectric actuators. IEEE/ASME Transactions on Mechatronics, 2000, 5(4): 331–341

    Article  Google Scholar 

  3. Zhang Y K, Tu Z, Lu T F, Al-Sarawi S. A simplified transfer matrix of multi-layer piezoelectric stack. Journal of Intelligent Material Systems and Structures, 2017, 28(5): 595–603

    Article  Google Scholar 

  4. Pérez R, Agnus J, Clévy C, Hubert A, Chaillet N. Modeling, fabrication, and validation of a high-performance 2-DoF piezoactuator for micromanipulation. IEEE/ASME Transactions on Mechatronics, 2005, 10(2): 161–171

    Article  Google Scholar 

  5. Bendsøe M P, Sigmund O. Topology Optimization: Theory, Methods and Applications. Berlin: Springer, 2003

    MATH  Google Scholar 

  6. Gao J, Luo Z, Li H, Gao L. Topology optimization for multiscale design of porous composites with multi-domain microstructures. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 451–476

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu H, Zong H M, Shi T L, Xia Q. M-VCUT level set method for optimizing cellular structures. Computer Methods in Applied Mechanics and Engineering, 2020, 367: 113154

    Article  MathSciNet  MATH  Google Scholar 

  8. Li Q H, Sigmund O, Jensen J S, Aage N. Reduced-order methods for dynamic problems in topology optimization: a comparative study. Computer Methods in Applied Mechanics and Engineering, 2021, 387: 114149

    Article  MathSciNet  MATH  Google Scholar 

  9. Chu S, Featherston C, Kim H A. Design of stiffened panels for stress and buckling via topology optimization. Structural and Multidisciplinary Optimization, 2021, 64(5): 3123–3146

    Article  MathSciNet  Google Scholar 

  10. Chu S, Townsend S, Featherston C, Kim H A. Simultaneous layout and topology optimization of curved stiffened panels. AIAA Journal, 2021, 59(7): 2768–2783

    Article  Google Scholar 

  11. Silva E C N, Fonseca J S O, Kikuchi N. Optimal design of piezoelectric microstructures. Computational Mechanics, 1997, 19(5): 397–410

    Article  MATH  Google Scholar 

  12. Silva E C N, Fonseca J S O, de Espinosa F M, Crumm A T, Brady G A, Halloran J W, Kikuchi N. Design of piezocomposite materials and piezoelectric transducers using topology optimization—part I. Archives of Computational Methods in Engineering, 1999, 6(2): 117–182

    Article  MathSciNet  Google Scholar 

  13. Silva E C N, Nishiwaki S, Fonseca J S O, Kikuchi N. Optimization methods applied to material and flextensional actuator design using the homogenization method. Computer Methods in Applied Mechanics and Engineering, 1999, 172(1–4): 241–271

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou M, Rozvany G I N. The COC algorithm, part II: topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1–3): 309–336

    Article  Google Scholar 

  15. Bendsøe M P, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 1999, 69(9–10): 635–654

    MATH  Google Scholar 

  16. Silva E C N, Kikuchi N. Design of piezoelectric transducers using topology optimization. Smart Materials and Structures, 1999, 8(3): 350–364

    Article  Google Scholar 

  17. Canfield S, Frecker M. Topology optimization of compliant mechanical amplifiers for piezoelectric actuators. Structural and Multidisciplinary Optimization, 2000, 20(4): 269–279

    Article  Google Scholar 

  18. Carbonari R C, Silva E C N, Nishiwaki S. Design of piezoelectric multi-actuated microtools using topology optimization. Smart Materials and Structures, 2005, 14(6): 1431–1447

    Article  Google Scholar 

  19. Kögl M, Silva E C N. Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Materials and Structures, 2005, 14(2): 387–399

    Article  Google Scholar 

  20. Kim J E, Kim D S, Ma P S, Kim Y Y. Multi-physics interpolation for the topology optimization of piezoelectric systems. Computer Methods in Applied Mechanics and Engineering, 2010, 199(49–52): 3153–3168

    Article  MathSciNet  MATH  Google Scholar 

  21. Gonçalves J F, De Leon D M, Perondi E A. Simultaneous optimization of piezoelectric actuator topology and polarization. Structural and Multidisciplinary Optimization, 2018, 58(3): 1139–1154

    Article  MathSciNet  Google Scholar 

  22. Homayouni-Amlashi A, Schlinquer T, Mohand-Ousaid A, Rakotondrabe M. 2D topology optimization MATLAB codes for piezoelectric actuators and energy harvesters. Structural and Multidisciplinary Optimization, 2021, 63(2): 983–1014

    Article  MathSciNet  Google Scholar 

  23. Yang S T, Li Y L, Xia X, Ning P, Ruan W T, Zheng R F, Lu X H. A topology optimization method and experimental verification of piezoelectric stick—slip actuator with flexure hinge mechanism. Archive of Applied Mechanics, 2022, 92(1): 271–285

    Article  Google Scholar 

  24. Yang B, Cheng C Z, Wang X, Meng Z, Homayouni-Amlashi A. Reliability-based topology optimization of piezoelectric smart structures with voltage uncertainty. Journal of Intelligent Material Systems and Structures, 2022 (in press)

  25. Wang Y G, Kang Z, Zhang X P. A velocity field level set method for topology optimization of piezoelectric layer on the plate with active vibration control. Mechanics of Advanced Materials and Structures, 2022 (in press)

  26. Kang Z, Wang X M. Topology optimization of bending actuators with multilayer piezoelectric material. Smart Materials and Structures, 2010, 19(7): 075018

    Article  Google Scholar 

  27. Carbonari R C, Silva E C N, Paulino G H. Topology optimization design of functionally graded bimorph-type piezoelectric actuators. Smart Materials and Structures, 2007, 16(6): 2605–2620

    Article  Google Scholar 

  28. Nakasone P H, Silva E C N. Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. Journal of Intelligent Material Systems and Structures, 2010, 21(16): 1627–1652

    Article  Google Scholar 

  29. Zhang X P, Kang Z. Dynamic topology optimization of piezoelectric structures with active control for reducing transient response. Computer Methods in Applied Mechanics and Engineering, 2014, 281: 200–219

    Article  MathSciNet  MATH  Google Scholar 

  30. Moretti M, Silva E C N. Topology optimization of piezoelectric bimaterial actuators with velocity feedback control. Frontiers of Mechanical Engineering, 2019, 14(2): 190–200

    Article  Google Scholar 

  31. Kang Z, Tong L Y. Integrated optimization of material layout and control voltage for piezoelectric laminated plates. Journal of Intelligent Material Systems and Structures, 2008, 19(8): 889–904

    Article  Google Scholar 

  32. Kang Z, Wang R, Tong L Y. Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13–16): 1467–1478

    Article  MathSciNet  MATH  Google Scholar 

  33. Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39–41): 4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  34. Singh S K, Singh I V. Analysis of cracked functionally graded piezoelectric material using XIGA. Engineering Fracture Mechanics, 2020, 230: 107015

    Article  Google Scholar 

  35. Gao J, Xiao M, Zhang Y, Gao L. A comprehensive review of isogeometric topology optimization: methods, applications and prospects. Chinese Journal of Mechanical Engineering, 2020, 33(1): 87

    Article  Google Scholar 

  36. Hassani B, Khanzadi M, Tavakkoli S M. An isogeometrical approach to structural topology optimization by optimality criteria. Structural and Multidisciplinary Optimization, 2012, 45(2): 223–233

    Article  MathSciNet  MATH  Google Scholar 

  37. Gao J, Gao L, Luo Z, Li P G. Isogeometric topology optimization for continuum structures using density distribution function. International Journal for Numerical Methods in Engineering, 2019, 119(10): 991–1017

    Article  MathSciNet  Google Scholar 

  38. Wang Y J, Benson D J. Isogeometric analysis for parameterized LSM-based structural topology optimization. Computational Mechanics, 2016, 57(1): 19–35

    Article  MathSciNet  MATH  Google Scholar 

  39. Ghasemi H, Park H S, Rabczuk T. A level-set based IGA formulation for topology optimization of flexoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258

    Article  MathSciNet  MATH  Google Scholar 

  40. Gao J, Xiao M, Zhou M, Gao L. Isogeometric topology and shape optimization for composite structures using level-sets and adaptive Gauss quadrature. Composite Structures, 2022, 285: 115263

    Article  Google Scholar 

  41. Hou W B, Gai Y D, Zhu X F, Wang X, Zhao C, Xu L K, Jiang K, Hu P. Explicit isogeometric topology optimization using moving morphable components. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 694–712

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang W S, Li D D, Kang P, Guo X, Youn S K. Explicit topology optimization using IGA-based moving morphable void (MMV) approach. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112685

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang Z P, Poh L H, Dirrenberger J, Zhu Y L, Forest S. Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization. Computer Methods in Applied Mechanics and Engineering, 2017, 323: 250–271

    Article  MathSciNet  MATH  Google Scholar 

  44. Gao J, Xue H P, Gao L, Luo Z. Topology optimization for auxetic metamaterials based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2019, 352: 211–236

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang C, Yu T T, Shao G J, Bui T Q. Multi-objective isogeometric integrated optimization for shape control of piezoelectric functionally graded plates. Computer Methods in Applied Mechanics and Engineering, 2021, 377: 113698

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhu B L, Zhang X M, Zhang H C, Liang J W, Zang H Y, Li H, Wang R X. Design of compliant mechanisms using continuum topology optimization: a review. Mechanism and Machine Theory, 2020, 143: 103622

    Article  Google Scholar 

  47. Koppen S, Langelaar M, van Keulen F. A simple and versatile topology optimization formulation for flexure synthesis. Mechanism and Machine Theory, 2022, 172: 104743

    Article  Google Scholar 

  48. Wang R X, Zhang X M, Zhu B L, Qu F H, Chen B C, Liang J W. Hybrid explicit—implicit topology optimization method for the integrated layout design of compliant mechanisms and actuators. Mechanism and Machine Theory, 2022, 171: 104750

    Article  Google Scholar 

  49. Sigmund O. Manufacturing tolerant topology optimization. Acta Mechanica Sinica, 2009, 25(2): 227–239

    Article  MATH  Google Scholar 

  50. Xia Q, Shi T L. Topology optimization of compliant mechanism and its support through a level set method. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 359–375

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang F W, Lazarov B S, Sigmund O. On projection methods, convergence and robust formulations in topology optimization. Structural and Multidisciplinary Optimization, 2011, 43(6): 767–784

    Article  MATH  Google Scholar 

  52. Luo J Z, Luo Z, Chen S K, Tong L Y, Wang M Y. A new level set method for systematic design of hinge-free compliant mechanisms. Computer Methods in Applied Mechanics and Engineering, 2008, 198(2): 318–331

    Article  MATH  Google Scholar 

  53. da Silva G A, Beck A T, Sigmund O. Topology optimization of compliant mechanisms with stress constraints and manufacturing error robustness. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 397–421

    Article  MathSciNet  MATH  Google Scholar 

  54. Lerch R. Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1990, 37(3): 233–247

    Article  Google Scholar 

  55. Kang Z, Wang Y Q. Structural topology optimization based on non-local Shepard interpolation of density field. Computer Methods in Applied Mechanics and Engineering, 2011, 200(49–52): 3515–3525

    Article  MathSciNet  MATH  Google Scholar 

  56. Trillet D, Duysinx P, Fernández E. Analytical relationships for imposing minimum length scale in the robust topology optimization formulation. Structural and Multidisciplinary Optimization, 2021, 64(4): 2429–2448

    Article  Google Scholar 

  57. Wang Y Q, Chen F F, Wang M Y. Concurrent design with connectable graded microstructures. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 84–101

    Article  MathSciNet  MATH  Google Scholar 

  58. Li Q H, Xu R, Wu Q B, Liu S T. Topology optimization design of quasi-periodic cellular structures based on erode—dilate operators. Computer Methods in Applied Mechanics and Engineering, 2021, 377: 113720

    Article  MathSciNet  MATH  Google Scholar 

  59. Xiao M, Liu X L, Zhang Y, Gao L, Gao J, Chu S. Design of graded lattice sandwich structures by multiscale topology optimization. Computer Methods in Applied Mechanics and Engineering, 2021, 384: 113949

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang Y G, Kang Z. A level set method for shape and topology optimization of coated structures. Computer Methods in Applied Mechanics and Engineering, 2018, 329: 553–574

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhang Y, Xiao M, Gao L, Gao J, Li H. Multiscale topology optimization for minimizing frequency responses of cellular composites with connectable graded microstructures. Mechanical Systems and Signal Processing, 2020, 135: 106369

    Article  Google Scholar 

  62. Zhang Y, Zhang L, Ding Z, Gao L, Xiao M, Liao W H. A multiscale topological design method of geometrically asymmetric porous sandwich structures for minimizing dynamic compliance. Materials & Design, 2022, 214: 110404

    Article  Google Scholar 

  63. Svanberg K. The method of moving asymptotes—a new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359–373

    Article  MathSciNet  MATH  Google Scholar 

  64. Hägg L, Wadbro E. On minimum length scale control in density based topology optimization. Structural and Multidisciplinary Optimization, 2018, 58(3): 1015–1032

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant No. 52105255), the National Key R&D Program of China (Grant No. 2020YFB1708300), the Tencent Foundation or XPLORER PRIZE, the Knowledge Innovation Program of Wuhan-Shuguang, and the Open Fund of Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education NJ2020003 (Grant No. INMD-2021M02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Yan or Liang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Xiao, M., Yan, Z. et al. Robust isogeometric topology optimization for piezoelectric actuators with uniform manufacturability. Front. Mech. Eng. 17, 27 (2022). https://doi.org/10.1007/s11465-022-0683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-022-0683-5

Keywords

Navigation