Skip to main content
Log in

Implicit Heaviside filter with high continuity based on suitably graded THB splines

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The variable density topology optimization (TO) method has been applied to various engineering fields because it can effectively and efficiently generate the conceptual design for engineering structures. However, it suffers from the problem of low continuity resulting from the discreteness of both design variables and explicit Heaviside filter. In this paper, an implicit Heaviside filter with high continuity is introduced to generate black and white designs for TO where the design space is parameterized by suitably graded truncated hierarchical B-splines (THB). In this approach, the fixed analysis mesh of isogeometric analysis is decoupled from the design mesh, whose adaptivity is implemented by truncated hierarchical B-spline subjected to an admissible requirement. Through the intrinsic local support and high continuity of THB basis, an implicit adaptively adjusted Heaviside filter is obtained to remove the checkboard patterns and generate black and white designs. Threefold advantages are attained in the proposed filter: a) The connection between analysis mesh and adaptive design mesh is easily established compared with the traditional adaptive TO method using nodal density; b) the efficiency in updating design variables is remarkably improved than the traditional implicit sensitivity filter based on B-splines under successive global refinement; and c) the generated black and white designs are preliminarily compatible with current commercial computer aided design system. Several numerical examples are used to verify the effectiveness of the proposed implicit Heaviside filter in compliance and compliant mechanism as well as heat conduction TO problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197–224

    Article  MathSciNet  MATH  Google Scholar 

  2. Bendsøe M P. Optimal shape design as a material distribution problem. Structural Optimization, 1989, 1(4): 193–202

    Article  Google Scholar 

  3. Sigmund O. A 99 line topology optimization code written in matlab. Structural and Multidisciplinary Optimization, 2001, 21(2): 120–127

    Article  Google Scholar 

  4. Wang M Y, Wang X M, Guo D M. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1–2): 227–246

    Article  MathSciNet  MATH  Google Scholar 

  5. Allaire G, Jouve F, Toader A M. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1): 363–393

    Article  MathSciNet  MATH  Google Scholar 

  6. Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers & Structures, 1993, 49(5): 885–896

    Article  Google Scholar 

  7. Guo X, Zhang W S, Zhong W L. Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. Journal of Applied Mechanics, 2014, 81(8): 081009

    Article  Google Scholar 

  8. Guo X, Zhang W S, Zhang J, Yuan J. Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 711–748

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang W S, Yang W Y, Zhou J H, Li D, Guo X. Structural topology optimization through explicit boundary evolution. Journal of Applied Mechanics, 2017, 84(1): 011011

    Article  Google Scholar 

  10. Cai S Y, Zhang W H. An adaptive bubble method for structural shape and topology optimization. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112778

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou Y, Zhang W H, Zhu J H, Xu Z. Feature-driven topology optimization method with signed distance function. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 1–32

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiu L P, Zhang W H, Meng L, Zhou Y, Chen L. A CAD-oriented structural topology optimization method. Computers & Structures, 2020, 239: 106324

    Article  Google Scholar 

  13. Bourdin B. Filters in topology optimization. International Journal for Numerical Methods in Engineering, 2001, 50(9): 2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  14. Sigmund O. Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization, 2007, 33(4–5): 401–424

    Article  Google Scholar 

  15. Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39–41): 4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang Y J, Benson D J. Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements. Frontiers of Mechanical Engineering, 2016, 11(4): 328–343

    Article  Google Scholar 

  17. Hou W B, Gai Y D, Zhu X F, Wang X, Zhao C, Xu L K, Jiang K, Hu P. Explicit isogeometric topology optimization using moving morphable components. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 694–712

    Article  MathSciNet  MATH  Google Scholar 

  18. Xie X D, Wang S T, Xu M M, Wang Y J. A new isogeometric topology optimization using moving morphable components based on R-functions and collocation schemes. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 61–90

    Article  MathSciNet  MATH  Google Scholar 

  19. Xie X D, Wang S T, Ye M, Xia Z H, Zhao W, Jiang N, Xu M M. Isogeometric topology optimization based on energy penalization for symmetric structure. Frontiers of Mechanical Engineering, 2020, 15(1): 100–122

    Article  Google Scholar 

  20. Xu J, Gao L, Xiao M, Gao J, Li H. Isogeometric topology optimization for rational design of ultra-lightweight architected materials. International Journal of Mechanical Sciences, 2020, 166: 105103

    Article  Google Scholar 

  21. Gao J, Xiao M, Gao L, Yan J H, Yan W T. Isogeometric topology optimization for computational design of re-entrant and chiral auxetic composites. Computer Methods in Applied Mechanics and Engineering, 2020, 362: 112876

    Article  MathSciNet  MATH  Google Scholar 

  22. Gao J, Wang L, Xiao M, Gao L, Li P G. An isogeometric approach to topological optimization design of auxetic composites with trimaterial micro-architectures. Composite Structures, 2021, 271: 114163

    Article  Google Scholar 

  23. Hassani B, Khanzadi M, Tavakkoli S M. An isogeometrical approach to structural topology optimization by optimality criteria. Structural and Multidisciplinary Optimization, 2012, 45(2): 223–233

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang Y J, Xu H, Pasini D. Multiscale isogeometric topology optimization for lattice materials. Computer Methods in Applied Mechanics and Engineering, 2017, 316: 568–585

    Article  MathSciNet  MATH  Google Scholar 

  25. Burman E, Elfverson D, Hansbo P, Larson M G, Larsson K. Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions. Computer Methods in Applied Mechanics and Engineering, 2019, 350: 462–479

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu M M, Xia L, Wang S Y, Liu L H, Xie X D. An isogeometric approach to topology optimization of spatially graded hierarchical structures. Composite Structures, 2019, 225: 111171

    Article  Google Scholar 

  27. Bazilevs Y, Calo V M, Cottrell J A, Evans J A, Hughes T J R, Lipton S, Scott M A, Sederberg T W. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5–8): 229–263

    Article  MathSciNet  MATH  Google Scholar 

  28. Scott M A, Borden M J, Verhoosel C V, Sederberg T W, Hughes T J R. Isogeometric finite element data structures based on Bézier extraction of T-splines. International Journal for Numerical Methods in Engineering, 2011, 88(2): 126–156

    Article  MathSciNet  MATH  Google Scholar 

  29. Scott M A, Li X, Sederberg T W, Hughes T J R. Local refinement of analysis-suitable T-splines. Computer Methods in Applied Mechanics and Engineering, 2012, 213–216: 206–222

    Article  MathSciNet  MATH  Google Scholar 

  30. Kraft R. Adaptive and linearly independent multilevel B-splines. In: Proceedings of the 3rd International Conference on Curves and Surfaces. 1997, 2: 209–218

    MathSciNet  MATH  Google Scholar 

  31. Vuong A V, Giannelli C, Jüttler B, Simeon B. A hierarchical approach to adaptive local refinement in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2011, 200(49–52): 3554–3567

    Article  MathSciNet  MATH  Google Scholar 

  32. Xie X D, Wang S T, Xu M M, Jiang N, Wang Y J. A hierarchical spline based isogeometric topology optimization using moving morphable components. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112696

    Article  MathSciNet  MATH  Google Scholar 

  33. Johannessen K A, Kvamsdal T, Dokken T. Isogeometric analysis using LR B-splines. Computer Methods in Applied Mechanics and Engineering, 2014, 269: 471–514

    Article  MathSciNet  MATH  Google Scholar 

  34. Johannessen K A, Remonato F, Kvamsdal T. On the similarities and differences between classical hierarchical, truncated hierarchical and LR B-splines. Computer Methods in Applied Mechanics and Engineering, 2015, 291: 64–101

    Article  MathSciNet  MATH  Google Scholar 

  35. Kanduč T, Giannelli C, Pelosi F, Speleers H. Adaptive isogeometric analysis with hierarchical box splines. Computer Methods in Applied Mechanics and Engineering, 2017, 316: 817–838

    Article  MathSciNet  MATH  Google Scholar 

  36. Xia S T, Qian X P. Isogeometric analysis with Bézier tetrahedra. Computer Methods in Applied Mechanics and Engineering, 2017, 316: 782–816

    Article  MathSciNet  MATH  Google Scholar 

  37. Giannelli C, Jüttler B, Kleiss S K, Mantzaflaris A, Simeon B, Špeh J. THB-splines: an effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 299: 337–365

    Article  MathSciNet  MATH  Google Scholar 

  38. Giannelli C, Jüttler B, Speleers H. THB-splines: the truncated basis for hierarchical splines. Computer Aided Geometric Design, 2012, 29(7): 485–498

    Article  MathSciNet  MATH  Google Scholar 

  39. Xie X D, Wang S T, Wang Y J, Jiang N, Zhao W, Xu M M. Truncated hierarchical B-spline-based topology optimization. Structural and Multidisciplinary Optimization, 2020, 62(1): 83–105

    Article  MathSciNet  Google Scholar 

  40. Li Y, Xie Y M. Evolutionary topology optimization for structures made of multiple materials with different properties in tension and compression. Composite Structures, 2021, 259: 113497

    Article  Google Scholar 

  41. Qian X P. Topology optimization in B-spline space. Computer Methods in Applied Mechanics and Engineering, 2013, 265: 15–35

    Article  MathSciNet  MATH  Google Scholar 

  42. Gao J, Gao L, Luo Z, Li P G. Isogeometric topology optimization for continuum structures using density distribution function. International Journal for Numerical Methods in Engineering, 2019, 119(10): 991–1017

    Article  MathSciNet  Google Scholar 

  43. Gao Y L, Guo Y J, Zheng S J. A NURBS-based finite cell method for structural topology optimization under geometric constraints. Computer Aided Geometric Design, 2019, 72: 1–18

    Article  MathSciNet  MATH  Google Scholar 

  44. Costa G, Montemurro M, Pailhès J. A 2D topology optimisation algorithm in NURBS framework with geometric constraints. International Journal of Mechanics and Materials in Design, 2018, 14(4): 669–696

    Article  Google Scholar 

  45. Costa G, Montemurro M. Eigen-frequencies and harmonic responses in topology optimisation: a CAD-compatible algorithm. Engineering Structures, 2020, 214: 110602

    Article  Google Scholar 

  46. Costa G, Montemurro M, Pailhès J. NURBS hyper-surfaces for 3D topology optimization problems. Mechanics of Advanced Materials and Structures, 2021, 28(7): 665–684

    Article  Google Scholar 

  47. Costa G, Montemurro M, Pailhès J. Minimum length scale control in a NURBS-based SIMP method. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 963–989

    Article  MathSciNet  MATH  Google Scholar 

  48. Costa G, Montemurro M, Pailhès J, Perry N. Maximum length scale requirement in a topology optimisation method based on NURBS hyper-surfaces. CIRP Annals-Manufacturing Technology, 2019, 68(1): 153–156

    Article  Google Scholar 

  49. Guest J K, Prévost J H, Belytschko T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 2004, 61(2): 238–254

    Article  MathSciNet  MATH  Google Scholar 

  50. Xu S L, Cai Y W, Cheng G D. Volume preserving nonlinear density filter based on heaviside functions. Structural and Multidisciplinary Optimization, 2010, 41(4): 495–505

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang F W, Lazarov B S, Sigmund O. On projection methods, convergence and robust formulations in topology optimization. Structural and Multidisciplinary Optimization, 2011, 43(6): 767–784

    Article  MATH  Google Scholar 

  52. Pollini N, Amir O. Mixed projection- and density-based topology optimization with applications to structural assemblies. Structural and Multidisciplinary Optimization, 2020, 61(2): 687–710

    Article  MathSciNet  Google Scholar 

  53. Huang X D. Smooth topological design of structures using the floating projection. Engineering Structures, 2020, 208: 110330

    Article  Google Scholar 

  54. Huang X D. On smooth or 0/1 designs of the fixed-mesh element-based topology optimization. Advances in Engineering Software, 2021, 151: 102942

    Article  Google Scholar 

  55. Wang Y Q, Kang Z, He Q Z. An adaptive refinement approach for topology optimization based on separated density field description. Computers & Structures, 2013, 117: 10–22

    Article  Google Scholar 

  56. Wang Y Q, He J J, Luo Z, Kang Z. An adaptive method for high-resolution topology design. Acta Mechanica Sinica, 2013, 29(6): 840–850

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang Y Q, Kang Z, He Q Z. Adaptive topology optimization with independent error control for separated displacement and density fields. Computers & Structures, 2014, 135: 50–61

    Article  Google Scholar 

  58. Buffa A, Giannelli C. Adaptive isogeometric methods with hierarchical splines: error estimator and convergence. Mathematical Models and Methods in Applied Sciences, 2016, 26(1): 1–25

    Article  MathSciNet  MATH  Google Scholar 

  59. Bracco C, Giannelli C, Vázquez R. Refinement algorithms for adaptive isogeometric methods with hierarchical splines. Axioms, 2018, 7(3): 43

    Article  MATH  Google Scholar 

  60. Carraturo M, Giannelli C, Reali A, Vázquez R. Suitably graded THB-spline refinement and coarsening: towards an adaptive isogeometric analysis of additive manufacturing processes. Computer Methods in Applied Mechanics and Engineering, 2019, 348: 660–679

    Article  MathSciNet  MATH  Google Scholar 

  61. De Boor C. On calculating with B-splines. Journal of Approximation Theory, 1972, 6(1): 50–62

    Article  MathSciNet  MATH  Google Scholar 

  62. Garau E M, Vázquez R. Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Applied Numerical Mathematics, 2018, 123: 58–87

    Article  MathSciNet  MATH  Google Scholar 

  63. Xu J C, Zhang Z M. Analysis of recovery type a posteriori error estimators for mildly structured grids. Mathematics of Computation, 2004, 73(247): 1139–1152

    Article  MathSciNet  MATH  Google Scholar 

  64. Jari R H, Mu L. Application for superconvergence of finite element approximations for the elliptic problem by global and local L2-projection methods. American Journal of Computational Mathematics, 2012, 2(4): 249–257

    Article  Google Scholar 

  65. Costantini P, Manni C, Pelosi F, Sampoli M L. Quasi-interpolation in isogeometric analysis based on generalized B-splines. Computer Aided Geometric Design, 2010, 27(8): 656–668

    Article  MathSciNet  MATH  Google Scholar 

  66. Li M Z, Chen L J, Ma Q. A meshfree quasi-interpolation method for solving burgers’ equation. Mathematical Problems in Engineering, 2014, 2014: 492072

    MathSciNet  MATH  Google Scholar 

  67. Ma Z D, Kikuchi N, Cheng H C. Topological design for vibrating structures. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1–4): 259–280

    Article  MathSciNet  MATH  Google Scholar 

  68. Ferrari F, Sigmund O. A new generation 99 line matlab code for compliance topology optimization and its extension to 3D. Structural and Multidisciplinary Optimization, 2020, 62(4): 2211–2228

    Article  MathSciNet  Google Scholar 

  69. Xie X D, Yang A D, Jiang N, Zhao W, Liang Z S, Wang S T. Adaptive topology optimization under suitably graded THB-spline refinement and coarsening. International Journal for Numerical Methods in Engineering, 2021, 122(20): 5971–5998

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2020YFB1708300) and China Postdoctoral Science Foundation (Grant No. 2021M701310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuting Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Xie, X., Luo, N. et al. Implicit Heaviside filter with high continuity based on suitably graded THB splines. Front. Mech. Eng. 17, 14 (2022). https://doi.org/10.1007/s11465-021-0670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-021-0670-2

Keywords

Navigation