Skip to main content
Log in

Development of lunar regolith composite and structure via laser-assisted sintering

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Aiming at the exploration and resource utilization activities on the Moon, in situ resource utilization and in situ manufacturing are proposed to minimize the dependence on the ground transportation supplies. In this paper, a laser-assisted additive manufacturing process is developed to fabricate lunar regolith composites with PA12/SiO2 mixing powders. The process parameters and composite material compositions are optimized in an appropriate range through orthogonal experiments to establish the relationship of process—structure—property for lunar regolith composites. The optimal combination of composite material compositions and process parameters are mixing ratio of 50/50 in volume, laser power of 30 W, scanning speed of 3500 mm/s, and scanning hatch space of 0.2 mm. The maximum tensile strength of lunar regolith composites reaches 9.248 MPa, and the maximum depth of surface variation is 120.79 µm, which indicates poor powder fusion and sintering quality. Thereafter, the mechanical properties of laser-sintered lunar regolith composites are implemented to the topology optimization design of complex structures. The effectiveness and the feasibility of this laser-assisted process are potentially developed for future lightweight design and manufacturing of the solar panel installed on the lunar rover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

Additive manufacturing

CAD:

Computer-aided design

DIC:

Digital image correlation

DLP:

Digital light processing

DSC:

Differential scanning calorimetry

DTG:

Differential thermogravimetry

ESA:

European Space Agency

SEM:

Scanning electron microscope

SLS:

Selective laser sintering

STA:

Synchronous thermal analyzer

TGA:

Thermogravimetric analysis

F :

External force loading on the structure

h :

Hatch space

p :

Laser power

r :

Mixing ratio

R :

Influence degree of corresponding factors

T m :

Melting peak temperature

T r :

Recrystallization peak temperature

v :

Scanning speed

References

  1. Wu W R, Liu W W, Qiao D, Jie D G. Investigation on the development of deep space exploration. Science China Technological Sciences, 2012, 55(4): 1086–1091

    Article  Google Scholar 

  2. Xu L, Zou Y L, Jia Y Z. China’s planning for deep space exploration and lunar exploration before 2030. Chinese Journal of Space Science, 2018, 38(5): 591–592

    Google Scholar 

  3. Howell J T, Fikes J C, McLemore C A, Good J E. On-site fabrication infrastructure to enable efficient exploration and utilization of space. In: Proceedings of International Astronautical Federation—the 59th International Astronautical Congress. Glasgow, 2008, 20090016302

  4. Lee T S, Lee J, Ann K Y. Manufacture of polymeric concrete on the Moon. Acta Astronautica, 2015, 114: 60–64

    Article  Google Scholar 

  5. Goulas A, Binner J G P, Harris R A, Friel R J. Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing. Applied Materials Today, 2017, 6: 54–61

    Article  Google Scholar 

  6. Sanders G B, Larson W E. Integration of in-situ resource utilization into lunar/Mars exploration through field analogs. Advances in Space Research, 2011, 47(1): 20–29

    Article  Google Scholar 

  7. Hintze P E, Quintana S. Building a lunar or Martian launch pad with in situ materials: recent laboratory and field studies. Journal of Aerospace Engineering, 2013, 26(1): 134–142

    Article  Google Scholar 

  8. Bassler J A, Bodiford M P, Hammond M S, King R, Mclemore C A, Hall N R, Fiske M R, Ray J A. In situ fabrication and repair (ISFR) technologies; new challenges for exploration. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, 2006, AIAA 2006-350

  9. Jessen S, Choi E, Xue L J. Development of a space manufacturing facility for in-situ fabrication of large space structures. In: Proceedings of the 57th International Astronautical Congress. Valencia, 2006, 1–11

  10. Sanders G B, Larson W E. Progress made in lunar in situ resource utilization under NASA’s exploration technology and development program. Journal of Aerospace Engineering, 2013, 26(1): 5–17

    Article  Google Scholar 

  11. Rasera J N, Cilliers J J, Lamamy J A, Hadler K. The beneficiation of lunar regolith for space resource utilisation: a review. Planetary and Space Science, 2020, 186: 104879

    Article  Google Scholar 

  12. Montes C, Broussard K, Gongre M, Simicevic N, Mejia J, Tham J, Allouche E, Davis G. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Advances in Space Research, 2015, 56(6): 1212–1221

    Article  Google Scholar 

  13. Werkheiser N J, Edmunson J E, Fiske M R, Khoshnevis B. On the development of additive construction technologies for application to development of lunar/martian surface structures using in-situ materials. In: Proceedings of AIAA SPACE 2015 Conference and Exposition. Pasadena, 2015, AIAA 2015-4451

  14. McLemore C A, Fikes J C, McCarley K S, Good J E, Kennedy J P, Gilley S D. From lunar regolith to fabricated parts: technology developments and the utilization of Moon dirt. In: Proceedings of the 11th Biennial ASCE Aerospace Division International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Long Beach: ASCE, 2008

    Google Scholar 

  15. Naser M Z, Chehab A I. Materials and design concepts for space-resilient structures. Progress in Aerospace Sciences, 2018, 98: 74–90

    Article  Google Scholar 

  16. Hammond M S, Good J E, Gilley S D, Howard R W. Developing fabrication technologies to provide on demand manufacturing for exploration of the Moon and Mars. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2006, 526

    Google Scholar 

  17. Toutanji H, Fiske M R, Bodiford M P. Development and application of lunar “concrete” for habitats. In: Proceedings of the 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments and Second NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Houston: ASCE, 2006, 1–8

    Google Scholar 

  18. Cooper K G, Good J E, Gilley S D. Layered metals fabrication technology development for support of lunar exploration at NASA/MSFC. AIP Conference Proceedings, 2007, 880: 728–735

    Article  Google Scholar 

  19. Srivastava V, Lim S, Anand M. Microwave processing of lunar soil for supporting longer-term surface exploration on the Moon. Space Policy, 2016, 37: 92–96

    Article  Google Scholar 

  20. Allan S M, Merritt B J, Griffin B F, Hintze P E, Shulman H S. High-temperature microwave dielectric properties and processing of JSC-1AC lunar simulant. Journal of Aerospace Engineering, 2013, 26(4): 874–881

    Article  Google Scholar 

  21. Balla V K, Roberson L B, O’Connor G W, Trigwell S, Bose S, Bandyopadhyay A. First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping Journal, 2012, 18(6): 451–457

    Article  Google Scholar 

  22. Goulas A, Engstrom D S, Friel R J, Harris R A. Investigating the additive manufacture of extra-terrestrial materials. In: Proceedings of the 27th Annual International Solid Freeform Fabrication (SFF) Symposium—An Additive Manufacturing Conference. Austin: Laboratory for Freeform Fabrication and University of Texas at Austin, 2016, 2271–2281

    Google Scholar 

  23. Song L, Xu J, Tang H, Fan S Q, Liu J Z, Li X Y, Liu J Q. Research progress of simulated lunar soil molding. Acta Mineralogica Sinica, 2020, 40(1): 47–57 (in Chinese)

    Google Scholar 

  24. Toutanji H A, Evans S, Grugel R N. Performance of lunar sulfur concrete in lunar environments. Construction & Building Materials, 2012, 29: 444–448

    Article  Google Scholar 

  25. Jakus A E, Koube K D, Geisendorfer N R, Shah R N. Robust and elastic lunar and Martian structures from 3D-printed regolith inks. Scientific Reports, 2017, 7: 44931

    Article  Google Scholar 

  26. Toutanji H, Glenn-Loper B, Schrayshuen B. Strength and durability performance of waterless lunar concrete. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2005, AIAA 2005–1436

    Google Scholar 

  27. Liu M, Tang W Z, Duan W Y, Li S, Dou R, Wang G, Liu B S, Wang L. Digital light processing of lunar regolith structures with high mechanical properties. Ceramics International, 2019, 45(5): 5829–5836

    Article  Google Scholar 

  28. Cesaretti G, Dini E, Kestelier X D, Colla V, Pambaguian L. Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronautica, 2014, 93: 430–450

    Article  Google Scholar 

  29. Meurisse A, Makaya A, Willsch C, Sperl M. Solar 3D printing of lunar regolith. Acta Astronautica, 2018, 152: 800–810

    Article  Google Scholar 

  30. Wang G, Zhao W, Liu Y F, Cheng T J. Review of space manufacturing technique and developments. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2020, 50(4): 047006 (in Chinese)

    Article  Google Scholar 

  31. Prater T, Werkheiser N, Ledbetter F, Timucin D, Wheeler K, Snyder M. 3D printing in zero G technology demonstration mission: complete experimental results and summary of related material modeling efforts. The International Journal of Advanced Manufacturing Technology, 2019, 101(1–4): 391–417

    Article  Google Scholar 

  32. Reitz B, Lotz C, Gerdes N, Linke S, Olsen E, Pflieger K, Sohrt S, Ernst M, Taschner P, Neumann J, Stoll E, Overmeyer L. Additive manufacturing under lunar gravity and microgravity. Microgravity Science and Technology, 2021, 33(25): 1–12

    Google Scholar 

  33. Fateri M, Gebhardt A. Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications. International Journal of Applied Ceramic Technology, 2015, 12(1): 46–52

    Article  Google Scholar 

  34. Yuan S Q, Chua C K, Zhou K, Bai J M, Wei J. Dynamic mechanical behaviors of laser sintered polyurethane incorporated with mwcnts. In: Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016). Singapore: Nanyang Technological University, 2016, 361–366

    Google Scholar 

  35. Li J, Yuan S Q, Zhu J H, Li S Y, Zhang W H. Numerical model and experimental validation for laser sinterable semi-crystalline polymer: shrinkage and warping. Polymers, 2020, 12(6): 1373

    Article  Google Scholar 

  36. Yuan S Q, Li J, Yao X L, Zhu J H, Gu X J, Gao T, Xu Y J, Zhang W H. Intelligent optimization system for powder bed fusion of processable thermoplastics. Additive Manufacturing, 2020, 34: 101182

    Article  Google Scholar 

  37. Yuan S Q, Li S Y, Zhu J H, Tang Y L. Additive manufacturing of polymeric composites from material processing to structural design. Composites Part B: Engineering, 2021, 219: 108903

    Article  Google Scholar 

  38. Liu Y, Taylor L A. Characterization of lunar dust and a synopsis of available lunar simulants. Planetary and Space Science, 2011, 59(14): 1769–1783

    Article  Google Scholar 

  39. Zheng Y C, Wang S J, Ouyang Z Y, Zou Y L, Liu J Z, Li C L, Li X Y, Feng J M. CAS-1 lunar soil simulant. Advances in Space Research, 2009, 43(3): 448–454

    Article  Google Scholar 

  40. Tang H, Li X Y, Zhang S S, Wang S J, Liu J Z, Li S J, Li Y, Wu Y X. A lunar dust simulant: CLDS-i. Advances in Space Research, 2017, 59(4): 1156–1160

    Article  Google Scholar 

  41. Sibille L, Carpenter P, Schlagheck R, French R A. Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage. NASA Technical Reports NASA/TP-2006-214605, 2006

  42. Indyk S J, Benaroya H. A structural assessment of unrefined sintered lunar regolith simulant. Acta Astronautica, 2017, 140: 517–536

    Article  Google Scholar 

  43. Gualtieri T, Bandyopadhyay A. Compressive deformation of porous lunar regolith. Materials Letters, 2015, 143: 276–278

    Article  Google Scholar 

  44. Li S Y, Yuan S Q, Zhu J H, Wang C, Li J, Zhang W H. Additive manufacturing-driven design optimization: building direction and structural topology. Additive Manufacturing, 2020, 36: 101406

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2017YFB1102800), the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 11722219), the National Natural Science Foundation of China (Grant No. 51905439), and the Emerging (Interdisciplinary) Cultivation Project of Northwestern Polytechnical University, China (Grant Nos. 19SH030403 and 20SH030201).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jihong Zhu or Shangqin Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Meng, L., Li, S. et al. Development of lunar regolith composite and structure via laser-assisted sintering. Front. Mech. Eng. 17, 6 (2022). https://doi.org/10.1007/s11465-021-0662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-021-0662-2

Keywords

Navigation