Advertisement

Frontiers of Mechanical Engineering

, Volume 13, Issue 2, pp 225–231 | Cite as

Digital switched hydraulics

  • Min Pan
  • Andrew Plummer
Short Communication

Abstract

This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

Keywords

digital hydraulics switched inertance hydraulic systems energy efficiency high-speed switching valve fluid-borne noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scheidl R, Linjama M, Schmidt S. Is the future of fluid power digital? Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, 2012, 226(6): 721–723Google Scholar
  2. 2.
    Yang H Y, Pan M. Engineering research in fluid power: A review. Journal of Zhejiang University. Science A, 2015, 16(6): 427–442CrossRefGoogle Scholar
  3. 3.
    Linjama M, Laamanen A, Vilenius M. Is it time for digital hydraulics? In: Proceedings of the 8th Scandinavian International Conference on Fluid Power. Tampere, 2003, 347–366Google Scholar
  4. 4.
    Linjama M. Digital fluid power: State of the art. In: Proceedings of the 12th Scandinavian International Conference on Fluid Power. Tampere, 2011, 18–20Google Scholar
  5. 5.
    The Artemis Intelligent Power Ltd. Digital Displacement hydraulics. 2017. Retrieved from http://www.artemisip.com/Google Scholar
  6. 6.
    Digital Hydraulic LLC. Digital Hydraulic Transformer. 2017. Retrieved from http://www.digitalhydraulic.comGoogle Scholar
  7. 7.
    Norrhydro Ltd. NorrDigi System Solution. 2017. Retrieved from http://www.norrhydro.comGoogle Scholar
  8. 8.
    Scheidl R, Kogler H, Winkler B. Hydraulic switching controlobjectives, concepts, challenges and potential applications. Hidraulica, 2013, (1): 7–18Google Scholar
  9. 9.
    Winkler B. Development of a fast low-cost switching valve for big flow rates. In: Proceedings of the 3rd FPNI-PhD Symposium on Fluid Power. Terrassa, 2004, 599–606Google Scholar
  10. 10.
    Winkler B, Ploeckinger A, Scheidl R. A novel piloted fast switching multi poppet valve. International Journal of Fluid Power, 2010, 11 (3): 7–14CrossRefGoogle Scholar
  11. 11.
    Kogler H, Scheidl R. Two basic concepts of hydraulic switching converters. In: Proceedings of the First Workshop on Digital Fluid Power. Tampere, 2008, 113–128Google Scholar
  12. 12.
    Manhartsgruber B, Mikota G, Scheidl R. Modelling of a switching control hydraulic system. Mathematical and Computer Modelling of Dynamical Systems, 2005, 11(3): 329–344CrossRefzbMATHGoogle Scholar
  13. 13.
    Scheidl R, Manhartsgruber B, Kogler H. Mixed time-frequency domain simulation of a hydraulic inductance pipe with a check valve. Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, 2011, 225(10): 2413–2421CrossRefGoogle Scholar
  14. 14.
    Kogler H, Scheidl R, Ehrentraut M, et al. A compact hydraulic switching converter for robotic applications. In: Proceedings of Bath/ASME Symposium on Fluid Power and Motion Control. Bath: ASME, 2010, 55–68Google Scholar
  15. 15.
    Scheidl R, Garstenauer M, Manhartsgruber B. Switching Type Control of Hydraulic Drives—A Promising Perspective for Advanced Actuation in Agricultural Machinery. SAE Technical Paper 2000–01-2559, 2000Google Scholar
  16. 16.
    Kogler H. The hydraulic buck converter—Conceptual study and experiments. Dissertation for the Doctoral Degree. Linz: University Linz, 2012Google Scholar
  17. 17.
    Kogler H, Scheidl R. Energy efficient linear drive axis using a hydraulic switching converter. Journal of Dynamic Systems, Measurement, and Control, 2016, 138(9): 091010CrossRefGoogle Scholar
  18. 18.
    Johnston N, Pan M, Kudzma S. An enhanced transmission line method for modelling laminar flow of liquid in pipelines. Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, 2014, 228(4): 193–206CrossRefGoogle Scholar
  19. 19.
    Pan M, Johnston D, Plummer A, et al. Theoretical and experimental studies of a switched inertance hydraulic system. Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, 2014, 228(1): 12–25CrossRefGoogle Scholar
  20. 20.
    Pan M, Johnston D N, Plummer A R, et al. Theoretical and experimental studies of a switched inertance hydraulic system including switching transition dynamics, non-linearity and leakage. Proceedings of the Institution of Mechanical Engineers. Part I, Journal of Systems and Control Engineering, 2014, 228(10): 802–815CrossRefGoogle Scholar
  21. 21.
    Pan M, Johnston N, Robertson J, et al. Experimental investigation of a switched inertance hydraulic system with a high-speed rotary valve. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(12): 121003CrossRefGoogle Scholar
  22. 22.
    Pan M. Adaptive control of a piezoelectric valve for fluid-borne noise reduction in a hydraulic buck converter. Journal of Dynamic Systems, Measurement, and Control, 2017, 139(8): 081007CrossRefGoogle Scholar
  23. 23.
    Sell N, Johnston D, Plummer A, et al. A linear valve actuated switched inertance hydraulic system. In: Proceedings of the 14th Scandinavian International Conference on Fluid Power. 2015, 49430Google Scholar
  24. 24.
    Pan M, Plummer A, El Agha A. Theoretical and experimental studies of a switched inertance hydraulic system in a four-port high speed switching valve configuration. Energies, 2017, 10(6): 780CrossRefGoogle Scholar
  25. 25.
    Pan M. A global optimisation of a switched inertance hydraulic system based on genetic algorithm. In: Proceedings of the 15th Scandinavian International Conference on Fluid Power. Linköping, 2017, 302–308Google Scholar
  26. 26.
    Brown F T. Switched reactance hydraulics: A new way to control fluid power. In: Proceedings of the National Conference on Fluid Power. Chicago, 1987, 25–34Google Scholar
  27. 27.
    Johnston D N. A switched inertance device for efficient control of pressure and flow. In: Proceedings of Bath/ASME Fluid Power and Motion Control Symposium. New York: ASME, 2009, 1–8Google Scholar
  28. 28.
    Wang F, Gu L, Chen Y. A continuously variable hydraulic pressure converter based on high-speed on-off valves. Mechatronics, 2011, 21(8): 1298–1308CrossRefGoogle Scholar
  29. 29.
    Wang P, Kudzma S, Johnston D N, et al. The influence of wave effects on digital switching valve performance. In: Proceedings of the Fourth Workshop on Digital Fluid Power. Linz, 2011Google Scholar
  30. 30.
    Van de Ven J D. On fluid compressibility in switch-mode hydraulic circuits—Part I: Modelling and analysis. Journal of Dynamic Systems, Measurement, and Control, 2012, 135(2): 021013CrossRefGoogle Scholar
  31. 31.
    Wiens T K. Analysis and mitigation of valve switching losses in switched inertance converters. In: Proceedings of ASME/Bath 2015 Symposium on Fluid Power and Motion Control. Chicago: ASME, 2015, V001T01A053Google Scholar
  32. 32.
    Rannow M B, Tu H C, Li P Y, et al. Software enabled variable displacement pumps—Experimental studies. In: Proceedings of the 2006 ASME-IMECE. Chicago: ASME, 2006, IMECE2006-14973Google Scholar
  33. 33.
    Tu H C, Rannow MB, Van de Ven J D, et al. High speed rotary pulse width modulated on/off valve. In: Proceedings of the 2007 ASMEIMECE. Seattle, 2007, IMECE2007-42559Google Scholar
  34. 34.
    Wiens T. Analysis and mitigation of valve switching losses in switched inertance converters. In: Proceedings of ASME/Bath 2015 Symposium on Fluid Power and Motion Control. Chicago: ASME, 2015, FPMC2015-9600Google Scholar
  35. 35.
    Rannow MB, Li P Y. Soft switching approach to reducing transition losses in an on/off hydraulic valve. Journal of Dynamic Systems Measurement & Control, 2012, 134(6): 064501CrossRefGoogle Scholar
  36. 36.
    Yudell A C, Van de Ven J D. Soft switching in switched inertance hydraulic circuits. In: Proceedings of Bath/ASME 2016 Symposium on Fluid Power and Motion Control. Bath: ASME, 2016, V001T01A040Google Scholar
  37. 37.
    Li P Y, Li C Y, Chase T R. Software enabled variable displacement pumps. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition. Orlando: ASME, 2005, 12: 63–72Google Scholar
  38. 38.
    Brown F T, Tentarelli S C, Ramachandran S. A hydraulic rotary switched inertance servo-transformer. Journal of Dynamic Systems, Measurement, and Control, 1988, 110(2): 144–150CrossRefGoogle Scholar
  39. 39.
    Liaw C J, Brown F T. Nonlinear dynamics of an electrohydraulic flapper nozzle valve. Journal of Dynamic Systems, Measurement, and Control, 1990, 112(2): 298–304CrossRefGoogle Scholar
  40. 40.
    Yokota S, Akutu K. A fast-acting electro-hydraulic digital transducer: A poppet-type on-off valve using a multilayered piezoelectric device. JSME International Journal. Series 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 1991, 34(4): 489–495CrossRefGoogle Scholar
  41. 41.
    Cui P, Burton R T, Ukrainetz P R. Development of A High Speed On/Off Valve. SAE Technical Paper 911815, 1991Google Scholar
  42. 42.
    Kajima T, Kawamura Y. Development of a high-speed solenoid valve: Investigation of solenoids. IEEE Transactions on Industrial Electronics, 1995, 42(1): 1–8CrossRefGoogle Scholar
  43. 43.
    Winkler B, Scheidl R. Optimization of a fast switching valve for big flow rates. In: Proceedings of Bath Workshop on Power Transmission and Motion Control. 2006, 387–399Google Scholar
  44. 44.
    Tu H, Rannow M B, Wang M, et al. Modeling and validation of a high speed rotary PWM on/off valve. In: Proceedings of the ASME 2009 Dynamic Systems and Control Conference. Hollywood: ASME, 2009, 629–636CrossRefGoogle Scholar
  45. 45.
    Katz A A, Van de Ven J D. Design of a high-speed on-off valve. In: Proceedings of the ASME 2009 International Mechanical Engineering Congress and Exposition. Lake Buena Vista: ASME, 2009, 237–246Google Scholar
  46. 46.
    Sell N. Control of a fast switching valve for digital hydraulics. Dissertation for the Doctoral Degree. Bath: University of Bath, 2015Google Scholar
  47. 47.
    Sell N, Johnston D, Plummer A, et al. Development of a position controlled digital hydraulic valve. In: Proceedings of the ASME/BATH 2015 Symposium on Fluid Power and Motion Control. Chicago: ASME, 2015, V001T01A008Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Power Transmission and Motion Control, Department of Mechanical EngineeringUniversity of BathBathUK

Personalised recommendations