Frontiers of Mechanical Engineering

, Volume 12, Issue 2, pp 193–202 | Cite as

Full-band error control and crack-free surface fabrication techniques for ultra-precision fly cutting of large-aperture KDP crystals

  • F. H. Zhang
  • S. F. Wang
  • C. H. An
  • J. Wang
  • Q. Xu
Research Article

Abstract

Large-aperture potassium dihydrogen phosphate (KDP) crystals are widely used in the laser path of inertial confinement fusion (ICF) systems. The most common method of manufacturing half-meter KDP crystals is ultra-precision fly cutting. When processing KDP crystals by ultra-precision fly cutting, the dynamic characteristics of the fly cutting machine and fluctuations in the fly cutting environment are translated into surface errors at different spatial frequency bands. These machining errors should be suppressed effectively to guarantee that KDP crystals meet the full-band machining accuracy specified in the evaluation index. In this study, the anisotropic machinability of KDP crystals and the causes of typical surface errors in ultra-precision fly cutting of the material are investigated. The structures of the fly cutting machine and existing processing parameters are optimized to improve the machined surface quality. The findings are theoretically and practically important in the development of high-energy laser systems in China.

Keywords

ultra-precision fly cutting large-aperture KDP crystals spatial frequency processing error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to express their sincere gratitude to the National Natural Science Foundation of China (Grant Nos. 51535003 and 51275115) and the Ultra-Precision Technology Key Laboratory of China Academy of Engineering Physics (Grant No. zz14002) for providing financial support.

References

  1. 1.
    Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser. Fusion Science and Technology, 2016, 69(1): 25–145CrossRefGoogle Scholar
  2. 2.
    Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics. Fusion Science and Technology, 2016, 69(1): 146–249CrossRefGoogle Scholar
  3. 3.
    Campbell J H, Hawley-Fedder R A, Stolz C J, et al. NIF optical materials and fabrication technologies: An overview. Proceedings of SPIE, Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility, 2004, 5341: 84–101Google Scholar
  4. 4.
    Fang T, Lambropoulos J C. Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP). Journal of the American Ceramic Society, 2002, 85(1): 174–178CrossRefGoogle Scholar
  5. 5.
    Menapace J A, Ehrmann P R, Bickel R C. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: Nonaqueous fluids development, optical finish, and laser damage performance ant 1064 nm and 532 nm. Proceedings of SPIE, Laser-Induced Damage in Optical Materials, 2009, 7504: 750414Google Scholar
  6. 6.
    Zhao Q, Wang Y, Yu G, et al. Investigation of anisotropic mechanisms in ultra-precision diamond machining of KDP crystal. Journal of Materials Processing Technology, 2009, 209(8): 4169–4177CrossRefGoogle Scholar
  7. 7.
    An C, Wang J, Zhang F, et al. Mid-spatial frequency micro-waviness on machined surfaces by ultra-precision fly-cutting. Nanotechnology and Precision Engineering, 2010, 8: 493–446 (in Chinese)Google Scholar
  8. 8.
    Wang S, Fu P, Zhang F, et al. Investigation of surface micro waviness in single point diamond fly cutting. Journal of Harbin Institute of Technology, 2014, 21: 99–103Google Scholar
  9. 9.
    Xu Q, Wang J. Analysis of the influence of vacuum chucking on the distortion of the KDP crystal. Proceedings of SPIE, Advanced Optical Manufacturing and Testing Technology, 2000, 4231: 464–468Google Scholar
  10. 10.
    Chen W, Liang Y, Luo X, et al. Multi-scale surface simulation of the KDP crystal fly-cutting machining. International Journal of Advanced Manufacturing Technology, 2014, 73(1–4): 289–297CrossRefGoogle Scholar
  11. 11.
    Zong W, Li Z, Zhang L, et al. Finite element simulation of diamond tool geometries affecting the 3D surface topography in fly cutting of KDP crystals. International Journal of Advanced Manufacturing Technology, 2013, 68(9–12): 1927–1936CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • F. H. Zhang
    • 1
  • S. F. Wang
    • 1
    • 2
  • C. H. An
    • 2
  • J. Wang
    • 2
  • Q. Xu
    • 2
  1. 1.Department of Mechanical EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Chengdu Fine Optical Engineering Research CenterChengduChina

Personalised recommendations