Skip to main content
Log in

Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

A new hierarchical parameter estimation method for doubly fed induction generator (DFIG) and drive train system in a wind turbine generator (WTG) is proposed in this paper. Firstly, the parameters of the DFIG and the drive train are estimated locally under different types of disturbances. Secondly, a coordination estimation method is further applied to identify the parameters of the DFIG and the drive train simultaneously with the purpose of attaining the global optimal estimation results. The main benefit of the proposed scheme is the improved estimation accuracy. Estimation results confirm the applicability of the proposed estimation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rose J, Hiskens I A. Estimating wind turbine parameters and qualifying their effects on dynamic behavior. In: Proceedings of 2008 IEEE Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Century. Pennsylvania, 2008, 1–7

    Google Scholar 

  2. Pan X, Ju P, Xu Q, et al. A two-step method for estimating DFIG parameters in a wind turbine and the measurement selection. Proceedings of the CSEE, 2013, 33(13): 116–126 (in Chinese)

    Google Scholar 

  3. IEEE Guide: Test Procedures for Synchronous Machines. IEEE Standard 115-2009, 2010

  4. IEEE Guide: Identification, Testing, and Evaluation of the Dynamic Performance of Excitation Control Systems. IEEE Standard 421.2- 1990, 1990

  5. Asmine M, Brochu J, Fortmann J, et al. Model validation for wind turbine generator models. IEEE Transactions on Power Systems, 2011, 26(3): 1769–1782

    Article  Google Scholar 

  6. Marvik J I, Endegnanew A G. Wind turbine model validation with measure. Energy Procedia, 2012, 24: 143–150

    Article  Google Scholar 

  7. Jiménez F, Vigueras-Rodriguez A, Gómez-Lázaro E, et al. Validation of a mechanical model for fault ride-through: Application to a Gamesa G52 commercial wind turbine. IEEE Transactions on Energy Conversion, 2013, 28(3): 707–715

    Article  Google Scholar 

  8. Jiménez F, Gómez-Lázaro E, Fuentes J A, et al. Validation of a double fed induction generator wind turbine model and wind farm verification following the Spanish grid code. Wind Energy (Chichester, England), 2012, 15(4): 645–659

    Article  Google Scholar 

  9. Jiménez F, Gómez-Lázaro E, Fuentes J A, et al. Validation of a DFIG wind turbine model submitted to two-phase voltage dips following the Spanish grid code. Renewable Energy, 2013, 57: 27–34

    Article  Google Scholar 

  10. Trilla L, Gomis-Bellmunt O, Junyent-Ferré A, et al. Modeling and validation of DFIG 3-MW wind turbine using field test data of balanced and unbalanced voltage sags. IEEE Transactions on Power Systems, 2011, 2(4): 509–519

    Google Scholar 

  11. Brochu J, Larose C, Gagnon R. Validation of single- and multiplemachine equivalents for modeling wind power plants. IEEE Transactions on Energy Conversion, 2010, 26(2): 532–541

    Article  Google Scholar 

  12. Pedersen J K, Helgelsen-Pedersen K O, Kjølstad Poulsen N, et al. Contribution to a dynamic wind turbine model validation from a wind farm islanding experiment. Electric Power Systems Research, 2003, 64(1): 41–51

    Article  Google Scholar 

  13. van der Veen G J, van Wingerden J W, Fleming P A, et al. Global data-driven modelling of wind turbines in the presence of turbulence. Control Engineering Practice, 2013, 21(4): 441–454

    Article  Google Scholar 

  14. Kennedy J M, Fox B, Littler T, et al. Validation of fixed speed induction generator models for inertial response using wind farm measurements. IEEE Transactions on Power Systems, 2011, 26(3): 1454–1461

    Article  Google Scholar 

  15. González-Longatt F, Regulski P, Wall P, et al. Fixed speed wind generator model parameter estimation using improved particle swarm optimization and system frequency disturbances. In: Proceedings of IET Conference on Renewable Power Generation. Edinburgh: IEEE, 2011, 1–6

    Google Scholar 

  16. Bekker J C, Vermeulen H J. Parameter estimation of a doubly-fed induction generator in a wind generation topology. In: Proceedings of 47th International Universities Power Engineering Conference (UPEC). London: IEEE, 2012, 1–6

    Google Scholar 

  17. Wu F, Zhang X, Godfrey K, et al. Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator. IET Generation, Transmission & Distribution, 2007, 1(5): 751–760

    Article  Google Scholar 

  18. Mei F, Pal B C. Modal analysis of grid-connected doubly-fed induction generators. IEEE Transactions on Energy Conversion, 2007, 22(3): 728–736

    Article  Google Scholar 

  19. Ju P, Wu F, Jin Y, et al. Modelling and Control of Renewable Power Generation System. Beijing: Science Press, 2014 (in Chinese)

    Google Scholar 

  20. Trelea I. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters, 2003, 85(6): 317–325

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Major Program) (Grant Nos. 51190102 and 51207045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Ju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Ju, P., Wu, F. et al. Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator. Front. Mech. Eng. 12, 367–376 (2017). https://doi.org/10.1007/s11465-017-0429-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-017-0429-y

Keywords

Navigation