Advertisement

Frontiers of Mechanical Engineering

, Volume 12, Issue 1, pp 46–65 | Cite as

Recent advancements in optical microstructure fabrication through glass molding process

  • Tianfeng Zhou
  • Xiaohua Liu
  • Zhiqiang Liang
  • Yang Liu
  • Jiaqing Xie
  • Xibin Wang
Open Access
Review Article

Abstract

Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advancements in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and microstructure molding process, as well as ultrasonic vibrationassisted molding technology.

Keywords

optical microstructure microgroove microlens glass molding process single-point diamond cutting 

Notes

Acknowledgements

This work was supported by the National Basic Research Program of China (Grant No. 2015CB059900) and the National Natural Science Foundation of China (Grant No. 51375050).

References

  1. 1.
    Zhou T, Yan J, Masuda J, et al. Investigation on the viscoelasticity of optical glass in ultraprecision lens molding process. Journal of Materials Processing Technology, 2009, 209(9): 4484–4489CrossRefGoogle Scholar
  2. 2.
    Madanipour K, Tavassoly M T. Moiré fringes as two-dimensional autocorrelation of transmission function of linear gratings and its application for modulation transfer function measurement. Optics and Lasers in Engineering, 2010, 48(1): 43–47CrossRefGoogle Scholar
  3. 3.
    Morgan C J, Vallance R R, Marsh E R. Micro machining glass with polycrystalline diamond tools shaped by micro electro discharge machining. Journal of Micromechanics and Microengineering, 2004, 14(12): 1687–1692CrossRefGoogle Scholar
  4. 4.
    Fang F, Chen L. Ultra-precision cutting for ZKN7 glass. CIRP Annals—Manufacturing Technology, 2000, 49(1): 17–20CrossRefGoogle Scholar
  5. 5.
    Nicholas D J, Boon J E. The generation of high precision aspherical surfaces in glass by CNC machining. Journal of Physics D: Applied Physics, 1981, 14(4): 593–600CrossRefGoogle Scholar
  6. 6.
    Ono T, Matsumura T. Influence of tool inclination on brittle fracture in glass cutting with ball end mills. Journal of Materials Processing Technology, 2008, 202(1–3): 61––69CrossRefGoogle Scholar
  7. 7.
    Bouzid S, Bouaouadja N. Effect of impact angle on glass surfaces eroded by sand blasting. Journal of the European Ceramic Society, 2000, 20(4): 481–488CrossRefGoogle Scholar
  8. 8.
    Chen S, Kwok H S. Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates. Optics Express, 2010, 18(1): 37–42CrossRefGoogle Scholar
  9. 9.
    Chen M, Shen M, Zhu S, et al. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000 °C. Corrosion Science, 2013, 73: 331–341CrossRefGoogle Scholar
  10. 10.
    Revzin A, Russell R J, Yadavalli V K, et al. Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography. Langmuir, 2001, 17(18): 5440–5447CrossRefGoogle Scholar
  11. 11.
    Ehrfeld W, Lehr H. Deep X-ray lithography for the production of three-dimensional microstructures from metals, polymers and ceramics. Radiation Physics and Chemistry, 1995, 45(3): 349–365CrossRefGoogle Scholar
  12. 12.
    Totsu K, Fujishiro K, Tanaka S, et al. Fabrication of threedimensional microstructure using maskless gray-scale lithography. Sensors and Actuators A: Physical, 2006, 130–131: 387–392CrossRefGoogle Scholar
  13. 13.
    Bassous E. Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon. IEEE Transactions on Electron Devices, 1978, 25(10): 1178–1185CrossRefGoogle Scholar
  14. 14.
    Jee S E, Lee P S, Yoon B J, et al. Fabrication of microstructures by wet etching of anodic aluminum oxide substrates. Chemistry of Materials, 2005, 17(16): 4049–4052CrossRefGoogle Scholar
  15. 15.
    Murakami K, Wakabayashi Y, Minami K, et al. Cryogenic dry etching for high aspect ratio microstructures. In: Proceedings of An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, Micro Electro Mechanical Systems. IEEE, 1993Google Scholar
  16. 16.
    Sökmen Ü, Stranz A, Fündling S, et al. Capabilities of ICP-RIE cryogenic dry etching of silicon: Review of exemplary microstructures. Journal of Micromechanics and Microengineering, 2009, 19(10): 105005CrossRefGoogle Scholar
  17. 17.
    Reyntjens S, Puers R. A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering, 2001, 11(4): 287–300CrossRefGoogle Scholar
  18. 18.
    Wirth R. Focused ion beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chemical Geology, 2009, 261(3–4): 217––229CrossRefGoogle Scholar
  19. 19.
    Chao C, Shen S, Wu J. Fabrication of 3-D submicron glass structures by FIB. Journal of Materials Engineering and Performance, 2009, 18(7): 878–885CrossRefGoogle Scholar
  20. 20.
    Mailis S, Zergioti I, Koundourakis G, et al. Etching and printing of diffractive optical microstructures by a femtosecond excimer laser. Applied Optics, 1999, 38(11): 2301–2308CrossRefGoogle Scholar
  21. 21.
    Cao G, Konishi H, Li X. Mechanical properties and microstructure of SiC-reinforced Mg-(2,4)Al-1Si nanocomposites fabricated by ultrasonic cavitation based solidification processing. Materials Science and Engineering: A, 2008, 486(1–2): 357––362CrossRefGoogle Scholar
  22. 22.
    Däschner W, Long P, Stein R, et al. Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass. Applied Optics, 1997, 36(20): 4675–4680CrossRefGoogle Scholar
  23. 23.
    Pang Y K, Lee J C W, Lee H F, et al. Chiral microstructures (spirals) fabrication by holographic lithography. Optics Express, 2005, 13 (19): 7615–7620CrossRefGoogle Scholar
  24. 24.
    Lin C H, Lee G B, Chang B W, et al. A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. Journal of Micromechanics and Microengineering, 2002, 12(5): 590–597CrossRefGoogle Scholar
  25. 25.
    Zhang C, Rentsch R, Brinksmeier E. Advances in micro ultrasonic assisted lapping of microstructures in hard-brittle materials: A brief review and outlook. International Journal of Machine Tools and Manufacture, 2005, 45(7–8): 881––890CrossRefGoogle Scholar
  26. 26.
    Gottmann J, Hermans M, Ortmann J. Microcutting and hollow 3D microstructures in glasses by in-volume selective laser-induced etching (ISLE). Journal of Laser Micro/Nanoengineering, 2013, 8 (1): 15–18CrossRefGoogle Scholar
  27. 27.
    Piotter V, Bauer W, Benzler T, et al. Injection molding of components for microsystems. Microsystem Technologies, 2001, 7(3): 99–102CrossRefGoogle Scholar
  28. 28.
    Liou A C, Chen R H. Injection molding of polymer micro-and submicron structures with high-aspect ratios. The International Journal of Advanced Manufacturing Technology, 2006, 28(11): 1097–1103CrossRefGoogle Scholar
  29. 29.
    Lee H, Hong S, Yang K, et al. Fabrication of nano-sized resist patterns on flexible plastic film using thermal curing nano-imprint lithography. Microelectronic Engineering, 2006, 83(2): 323–327CrossRefGoogle Scholar
  30. 30.
    Zhou T, Yan J, Yoshihara N, et al. Study on nonisothermal glass molding press for aspherical lens. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2010, 4(5): 806–815CrossRefGoogle Scholar
  31. 31.
    Katsuki Masahide. Transferability of glass lens molding. Proceedings of SPIE, 2nd international Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 2006, 61490MGoogle Scholar
  32. 32.
    Aono Y, Negishi M, Takano J. Development of large-aperture aspherical lens with glass molding. Proceedings of SPIE, Advanced Optical Manufacturing and Testing Technology, 2000, 4231: 16–23Google Scholar
  33. 33.
    Zhou T, Yan J, Yoshihara N, et al. Shape compensation of the molding dies in glass molding press for aspherical lens. In: Proceedings of the 9th international conference on frontiers of design and manufacturing. 2010Google Scholar
  34. 34.
    Zhou T, Yan J, Kuriyagawa T. High-efficiency and ultra-precision glass molding of aspherical lens and microstructures. In: Proceedings of International Symposium on Ultraprecision Engineering and Nanotechnology. 2011Google Scholar
  35. 35.
    Zhou T, Yan J, Masuda J, et al. Investigation on shape transferability in ultraprecision glass molding press for microgrooves. Precision Engineering, 2011, 35(2): 214–220CrossRefGoogle Scholar
  36. 36.
    Zhou T, Ji W, Kuriyagawa T. Comparing microgroove array forming with micropyramid array forming in the glass molding press. Key Engineering Materials, 2010, 447–448: 361–365CrossRefGoogle Scholar
  37. 37.
    Pan C, Wu T, Chen M, et al. Hot embossing of micro-lens array on bulk metallic glass. Sensors and Actuators A: Physical, 2008, 141 (2): 422–431CrossRefGoogle Scholar
  38. 38.
    Yan J, Zhou T, Masuda J, et al. Modeling high-temperature glass molding process by coupling heat transfer and viscous deformation analysis. Precision Engineering, 2009, 33(2): 150–159CrossRefGoogle Scholar
  39. 39.
    Yan J, Oowada T, Zhou T, et al. Precision machining of microstructures on electroless-plated NiP surface for molding glass components. Journal of Materials Processing Technology, 2009, 209(10): 4802–4808CrossRefGoogle Scholar
  40. 40.
    Barbacki A, Kawalec M, Hamrol A. Turning and grinding as a source of microstructural changes in the surface layer of hardened steel. Journal of Materials Processing Technology, 2003, 133(1–2): 21––25CrossRefGoogle Scholar
  41. 41.
    Cao D M, Jiang J, Meng W, et al. Fabrication of high-aspect-ratio microscale Ta mold inserts with micro electrical discharge machining. Microsystem technologies, 2007, 13(5): 503–510CrossRefGoogle Scholar
  42. 42.
    Bojorquez B, Marloth R T, Es-Said O S. Formation of a crater in the workpiece on an electrical discharge machine. Engineering Failure Analysis, 2002, 9(1): 93–97CrossRefGoogle Scholar
  43. 43.
    Guu Y H, Hocheng H, Tai N H, et al. Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites. Journal of Materials Science, 2001, 36(8): 2037–2043CrossRefGoogle Scholar
  44. 44.
    Huang M, Chiang Y, Lin S, et al. Fabrication of microfluidic chip using micro-hot embossing with micro electrical discharge machining mold. Polymers for Advanced Technologies, 2012, 23(1): 57–64CrossRefGoogle Scholar
  45. 45.
    Reynaerts D, Meeusen W, Van Brussel H. Machining of threedimensional microstructures in silicon by electro-discharge machining. Sensors and Actuators A: Physical, 1998, 67(1–3): 159––165CrossRefGoogle Scholar
  46. 46.
    Yan J, Horikoshi A, Kuriyagawa T, et al. Manufacturing structured surface by combining microindentation and ultraprecision cutting. CIRP Journal of Manufacturing Science and Technology, 2012, 5 (1): 41–47CrossRefGoogle Scholar
  47. 47.
    Takahashi M, Sugimoto K, Maeda R. Nanoimprint of glass materials with glassy carbon molds fabricated by focused-ion-beam etching. Japanese Journal of Applied Physics, 2005, 44(7B): 5600CrossRefGoogle Scholar
  48. 48.
    Marty F, Rousseau L, Saadany B, et al. Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures. Microelectronics Journal, 2005, 36(7): 673–677CrossRefGoogle Scholar
  49. 49.
    Tanaka S, Rajanna K, Abe T, et al. Deep reactive ion etching of silicon carbide. Journal of Vacuum Science & Technology B, 2001, 19(6): 2173–2176CrossRefGoogle Scholar
  50. 50.
    Youn S W, Takahashi M, Goto H, et al. Microstructuring of glassy carbon mold for glass embossing—Comparison of focused ion beam, nano/femtosecond-pulsed laser and mechanical machining. Microelectronic Engineering, 2006, 83(11–12): 2482––2492CrossRefGoogle Scholar
  51. 51.
    Wurtz M Ad. On the hydruret of copper. Philosophical Magazine Series 3, 1844, 25(164): 154–156Google Scholar
  52. 52.
    Brenner A, Riddell G E. Nickel plating on steel by chemical reduction. Journal of Research of the National Bureau of Standards, 1946, 37(1): 31–34CrossRefGoogle Scholar
  53. 53.
    Brenner A, Riddell G E. Deposition of nickel and cobalt by chemical reduction. Journal of Research of the National Bureau of Standards, 1947, 39(5): 385–395CrossRefGoogle Scholar
  54. 54.
    Krishnan K H, John S, Srinivasan K N, et al. An overall aspect of electroless Ni-P depositions—A review article. Metallurgical and Materials Transactions A, 2006, 37(6): 1917–1926CrossRefGoogle Scholar
  55. 55.
    Strafford K N, Datta P K, O’donnell A K. Electroless nickel coatings: Their application, evaluation & production techniques. Materials & Design, 1982, 3(6): 608–614CrossRefGoogle Scholar
  56. 56.
    Nakasuji T, Kodera S, Hara S, et al. Diamond turning of brittle materials for optical components. CIRP Annals—Manufacturing Technology, 1990, 39(1): 89–92CrossRefGoogle Scholar
  57. 57.
    Casstevens J M, Daugherty C E. Diamond turning optical surfaces on electroless nickel. Proceedings of SPIE, Precision Machining of Optics, 1978, 159: 109CrossRefGoogle Scholar
  58. 58.
    Zhou T, Yan J, Liang Z, et al. Development of polycrystalline Ni-P mold by heat treatment for glass microgroove forming. Precision Engineering, 2015, 39: 25–30CrossRefGoogle Scholar
  59. 59.
    Liu Y, Zhao W, Zhou T, et al. Microgroove machining on crystalline nickel phosphide plating by single-point diamond cutting. International Journal of Advanced Manufacturing Technology (in press)Google Scholar
  60. 60.
    Guo Z, Keong K G, Sha W. Crystallisation and phase transformation behaviour of electroless nickel phosphorus platings during continuous heating. Journal of Alloys and Compounds, 2003, 358(1–2): 112––119CrossRefGoogle Scholar
  61. 61.
    Chern G L. Experimental observation and analysis of burr formation mechanisms in face milling of aluminum alloys. International Journal of Machine Tools and Manufacture, 2006, 46(12–13): 1517––1525CrossRefGoogle Scholar
  62. 62.
    Dornfeld D A, Kim J S, Dechow H, et al. Drilling burr formation in titanium alloy, Ti-6AI-4V. CIRP Annals—Manufacturing Technology, 1999, 48(1): 73–76CrossRefGoogle Scholar
  63. 63.
    Guo Y B, Dornfeld D A. Finite element modeling of burr formation process in drilling 304 stainless steel. Journal of Manufacturing Science and Engineering, 2000, 122(4): 612–619CrossRefGoogle Scholar
  64. 64.
    Jain A, Yi A Y. Numerical modeling of viscoelastic stress relaxation during glass lens forming process. Journal of the American Ceramic Society, 2005, 88(3): 530–535CrossRefGoogle Scholar
  65. 65.
    Yi A Y, Jain A. Compression molding of aspherical glass lenses—A combined experimental and numerical analysis. Journal of the American Ceramic Society, 2005, 88(3): 579–586CrossRefGoogle Scholar
  66. 66.
    Jain A, Firestone G C, Yi A Y. Viscosity measurement by cylindrical compression for numerical modeling of precision lens molding process. Journal of the American Ceramic Society, 2005, 88(9): 2409–2414CrossRefGoogle Scholar
  67. 67.
    Jung W, Lee H J, Park K. Investigation of localized heating characteristics in selective ultrasonic imprinting. International Journal of Precision Engineering and Manufacturing, 2015, 16(9): 1999–2004CrossRefGoogle Scholar
  68. 68.
    Xie J, Zhou T, Liu Y, et al. The effects of ultrasonic vibration in hot pressing for microgrooves. Materials Science Forum, 2016, 861: 121–126CrossRefGoogle Scholar
  69. 69.
    Xie J, Zhou T, Liu Y, et al. Mechanism study on microgroove forming by ultrasonic vibration assisted hot pressing. Precision Engineering, 2016, 46: 270–277CrossRefGoogle Scholar
  70. 70.
    Chen J, Chen Y, Li H, et al. Physical and chemical effects of ultrasound vibration on polymer melt in extrusion. Ultrasonics Sonochemistry, 2010, 17(1): 66–71MathSciNetCrossRefGoogle Scholar
  71. 71.
    Masuda J, Yan J, Tashiro T, et al. Microstructural and topographical changes of Ni-P plated moulds in glass lens pressing. International Journal of Surface Science and Engineering, 2009, 3(1–2): 86––102CrossRefGoogle Scholar
  72. 72.
    Masuda J, Yan J, Zhou T, et al. Thermally induced atomic diffusion at the interface between release agent coating and mould substrate in a glass moulding press. Journal of Physics D: Applied Physics, 2011, 44(21): 215302CrossRefGoogle Scholar
  73. 73.
    Schmidt M S, Hübner J, Boisen A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Advanced Materials, 2012, 24(10): OP11–OP18Google Scholar
  74. 74.
    Guo C, Feng L, Zhai J, et al. Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer. ChemPhysChem, 2004, 5(5): 750–753CrossRefGoogle Scholar
  75. 75.
    Gao W, Araki T, Kiyono S, et al. Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder. Precision Engineering, 2003, 27(3): 289–298CrossRefGoogle Scholar
  76. 76.
    Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190–1194CrossRefGoogle Scholar
  77. 77.
    Dunkel J, Wippermann F, Reimann A, et al. Fabrication of microoptical freeform arrays on wafer level for imaging applications. Optics Express, 2015, 23(25): 31915–31925CrossRefGoogle Scholar
  78. 78.
    Brückner A, Leitel R, Oberdörster A, et al. Multi-aperture optics for wafer-level cameras. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2011, 10(4): 043010CrossRefGoogle Scholar
  79. 79.
    Li L, Yi A Y. Design and fabrication of a freeform prism array for 3D microscopy. Journal of the Optical Society of America A, 2010, 27(12): 2613–2620CrossRefGoogle Scholar
  80. 80.
    Wippermann F C, Radtke D, Zeitner U, et al. Fabrication technologies for chirped refractive microlens arrays. Proceedings of SPIE, Current Developments in Lens Design and Optical Engineering VII, 2006, 6288: 62880OCrossRefGoogle Scholar
  81. 81.
    Li L, Yi A Y. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera. Applied Optics, 2012, 51(12): 1843–1852CrossRefGoogle Scholar
  82. 82.
    Li L, Yi A Y. Design and fabrication of a freeform microlens array for uniform beam shaping. Microsystem Technologies, 2011, 17 (12): 1713–1720MathSciNetCrossRefGoogle Scholar
  83. 83.
    Duparré J, Wippermann F, Dannberg P, et al. Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence. Optics Express, 2005, 13(26): 10539–10551CrossRefGoogle Scholar
  84. 84.
    Scheiding S, Yi A Y, Gebhardt A, et al. Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo. Optics Express, 2011, 19(24): 23938–23951CrossRefGoogle Scholar
  85. 85.
    Cheng D, Wang Y, Hua H, et al. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Applied Optics, 2009, 48(14): 2655–2668CrossRefGoogle Scholar
  86. 86.
    Asobe M. Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching. Optical Fiber Technology, 1997, 3(2): 142–148CrossRefGoogle Scholar
  87. 87.
    Sanghera J S, Aggarwal I D. Active and passive chalcogenide glass optical fibers for IR applications: A review. Journal of Non-Crystalline Solids, 1999, 256–257: 6–16CrossRefGoogle Scholar
  88. 88.
    Zhang X, Guimond Y, Bellec Y. Production of complex chalcogenide glass optics by molding for thermal imaging. Journal of Non-Crystalline Solids, 2003, 326–327: 519–523CrossRefGoogle Scholar
  89. 89.
    Aitken B G, Currie S C, Monahan B C, et al. US Patent 7330634. 2008-02-12Google Scholar
  90. 90.
    Liao M, Chaudhari C, Qin G, et al. Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity. Optics Express, 2009, 17(24): 21608–21614CrossRefGoogle Scholar
  91. 91.
    Brilland L, Smektala F, Renversez G, et al. Fabrication of complex structures of holey fibers in chalcogenide glass. Optics Express, 2006, 14(3): 1280–1285CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Tianfeng Zhou
    • 1
  • Xiaohua Liu
    • 2
  • Zhiqiang Liang
    • 1
  • Yang Liu
    • 2
  • Jiaqing Xie
    • 2
  • Xibin Wang
    • 1
  1. 1.Key Laboratory of Fundamental Science for Advanced MachiningBeijing Institute of TechnologyBeijingChina
  2. 2.School of Mechanical EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations