Skip to main content
Log in

Thermal buckling behavior of laminated composite plates: a finite-element study

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the thermal buckling behavior of composite laminated plates under a uniform temperature distribution is studied. A finite element of four nodes and 32 degrees of freedom (DOF), previously developed for the bending and mechanical buckling of laminated composite plates, is extended to investigate the thermal buckling behavior of laminated composite plates. Based upon the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical implementation of the present finite element allowed the comparison of the numerical obtained results with results obtained from the literature: 1) with element of the same order, 2) the first order shear deformation theory, 3) the high order shear deformation theory and 4) the three-dimensional solution. It was found that the obtained results were very close to the reference results and the proposed element offers a good convergence speed. Furthermore, a parametrical study was also conducted to investigate the effect of the anisotropy of composite materials on the critical buckling temperature of laminated plates. The study showed that: 1) the critical buckling temperature generally decreases with the increasing of the modulus ratio E L/E T and thermal expansion ratio α T/α L, and 2) the boundary conditions and the orientation angles significantly affect the critical buckling temperature of laminated plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gill S, Gupta M, Satsangi P S. Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite. Frontiers of Mechanical Engineering, 2013, 8(2): 187–200

    Article  Google Scholar 

  2. Thornton E A. Thermal Structures for Aerospace Applications. Reston, VA: AIAA, 1996

    Book  Google Scholar 

  3. Jones R M. Buckling of Bars, Plates, and Shells. Blacksburg Virginia: Bull Ridge Publishing, 2006

    Google Scholar 

  4. Tati A, Abibsi A. Un element fini pour la flexion et le flambage des plaques minces stratifiees en materiaux composites. Revue Des Composites Et Des Materiaux Avances, 2007, 17(3): 279–296

    Article  Google Scholar 

  5. Zhang Y X, Yang C H. Recent developments in finite element analysis for laminated composite plates. Composite Structures, 2009, 88(1): 147–157

    Article  Google Scholar 

  6. Chen W J, Lin P D, Chen L W. Thermal buckling behavior of thick composite laminated plates under nonuniform temperature distribution. Computers & Structures, 1991, 41(4): 637–645

    Article  MATH  Google Scholar 

  7. Chen W J, Lin P D, Chen L W. Thermal buckling behaviour of composite laminated plates with a circular hole. Composite Structures, 1991, 18(4): 379–397

    Article  MATH  Google Scholar 

  8. Huang N N, Tauchert T R. Thermal buckling of clamped symmetric laminated plates. Thin-walled Structures, 1992, 13(4): 259–273

    Article  Google Scholar 

  9. Noor A K, Peters J M. Thermomechanical buckling of multilayered composite plates. Journal of Engineering Mechanics, 1992, 118(2): 351–366

    Article  Google Scholar 

  10. Noor A K, Peters J M. Finite element buckling and postbuckling solutions for multilayered composite panels. Finite Elements in Analysis and Design, 1994, 15(4): 343–367

    Article  MATH  Google Scholar 

  11. Noor A K, Starnes J H, Peters J M. Thermomechanical buckling of multilayered composite panels with cutouts. AIAA Journal, 1994, 32(7): 1507–1519

    Article  Google Scholar 

  12. Noor A K, Starnes J H Jr, Peters J M. Thermomechanical buckling and postbuckling of multilayered composite panels. Composite Structures, 1993, 23(3): 233–251

    Article  Google Scholar 

  13. Chandrashekhara K. Thermal buckling of laminated plates using a shear flexible finite element. Finite Elements in Analysis and Design, 1992, 12(1): 51–61

    Article  MATH  Google Scholar 

  14. Prabhu M R, Dhanaraj R. Thermal buckling of laminated composite plates. Computers & Structures, 1994, 53(5): 1193–1204

    Article  MATH  Google Scholar 

  15. Lee Y S, Lee Y W, Yang M S, Park B S. Optimal design of thick laminated composite plates for maximum thermal buckling load. Journal of Thermal Stresses, 1999, 22(3): 259–273

    Article  Google Scholar 

  16. Topal U, Uzman Ü. Thermal buckling load optimization of laminated composite plates. Thin-walled Structures, 2008, 46(6): 667–675

    Article  Google Scholar 

  17. Topal U, Uzman Ü. Thermal buckling load optimization of laminated skew plates. Materials & Design, 2009, 30(7): 2569–2575

    Article  Google Scholar 

  18. Walker M, Reiss T, Adali S, Verijenko V E. Optimal design of symmetrically laminated plates for maximum buckling temperature. Journal of Thermal Stresses, 1997, 20(1): 21–33

    Article  Google Scholar 

  19. Kant T, Babu C S. Thermal buckling analysis of skew fibrereinforced composite and sandwich plates using shear deformable finite element models. Composite Structures, 2000, 49(1): 77–85

    Article  Google Scholar 

  20. Singha M K, Ramachandra L, Bandyopadhyay J. Stability and strength of composite skew plates under thermomechanical loads. AIAA Journal, 2001, 39(8): 1618–1623

    Article  Google Scholar 

  21. Kabir H R H, Askar H, Chaudhuri R A. Thermal buckling response of shear flexible laminated anisotropic plates using a three-node isoparametric element. Composite Structures, 2003, 59(2): 173–187

    Article  Google Scholar 

  22. Şahin Ö S. Thermal buckling of hybrid angle-ply laminated composite plates with a hole. Composites Science and Technology, 2005, 65(11–12): 1780–1790

    Google Scholar 

  23. Avci A, Kaya S, Daghan B. Thermal buckling of rectangular laminated plates with a hole. Journal of Reinforced Plastics and Composites, 2005, 24(3): 259–272

    Article  Google Scholar 

  24. Chang J S. FEM analysis of buckling and thermal buckling of antisymmetric angle-ply laminates according to transverse shear and normal deformable high order displacement theory. Computers & Structures, 1990, 37(6): 925–946

    Article  MATH  Google Scholar 

  25. Chang J S, Shiao F J. Thermal buckling analysis of isotropic and composite plates with a hole. Journal of Thermal Stresses, 1990, 13(3): 315–332

    Article  Google Scholar 

  26. Babu C S, Kant T. Refined higher order finite element models for thermal buckling of laminated composite and sandwich plates. Journal of Thermal Stresses, 2000, 23(2): 111–130

    Article  Google Scholar 

  27. Wu Z, Chen W. Thermomechanical buckling of laminated composite and sandwich plates using global-local higher order theory. International Journal of Mechanical Sciences, 2007, 49(6): 712–721

    Article  Google Scholar 

  28. Lal A, Singh B N, Kumar R. Effects of random system properties on the thermal buckling analysis of laminated composite plates. Computers & Structures, 2009, 87(17–18): 1119–1128

    Article  Google Scholar 

  29. Shiau L C, Kuo S Y, Chen C Y. Thermal buckling behavior of composite laminated plates. Composite Structures, 2010, 92(2): 508–514

    Article  Google Scholar 

  30. Thangaratnam K R, Palaninathan, Ramachandran J. Thermal buckling of composite laminated plates. Computers & Structures, 1989, 32(5): 1117–1124

    Article  MATH  Google Scholar 

  31. Chen L W, Chen L Y. Thermal buckling analysis of composite laminated plates by the finite-element method. Journal of Thermal Stresses, 1989, 12(1): 41–56

    Article  Google Scholar 

  32. Chen L W, Chen L Y. Thermal buckling behavior of laminated composite plates with temperature-dependent properties. Composite Structures, 1989, 13(4): 275–287

    Article  Google Scholar 

  33. Chen L W, Chen L Y. Thermal buckling analysis of laminated cylindrical plates by the finite element method. Computers & Structures, 1990, 34(1): 71–78

    Article  MATH  Google Scholar 

  34. Topal U, Uzman Ü. Effect of rectangular/circular cutouts on thermal buckling load optimization of angle-ply laminated thin plates. Science and Engineering of Composite Materials, 2010, 17(2): 93–110

    Article  Google Scholar 

  35. Lee J. Thermally induced buckling of laminated composites by a layerwise theory. Computers & Structures, 1997, 65(6): 917–922

    Article  MATH  Google Scholar 

  36. Shariyat M. Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory. Thin-walled Structures, 2007, 45(4): 439–452

    Article  Google Scholar 

  37. Kumar S, Singh B. Thermal buckling analysis of sma fiberreinforced composite plates using layerwise model. Journal of Aerospace Engineering, 2009, 22(4): 342–353

    Article  Google Scholar 

  38. Nali P, Carrera E. Accurate buckling analysis of composite layered plates with combined thermal and mechanical loadings. Journal of Thermal Stresses, 2013, 36(1): 1–18

    Article  Google Scholar 

  39. Shi Y, Lee R Y Y, Mei C. Thermal postbuckling of composite plates using the finite element modal coordinate method. Journal of Thermal Stresses, 1999, 22(6): 595–614

    Article  Google Scholar 

  40. Zhao X, Lee Y Y, Liew K M. Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures, 2009, 90(2): 161–171

    Article  Google Scholar 

  41. Matsunaga H. Thermal buckling of cross-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Composite Structures, 2005, 68(4): 439–454

    Article  Google Scholar 

  42. Noor A, Burton W. Three-dimensional solutions for thermal buckling of multilayered anisotropic plates. Journal of Engineering Mechanics, 1992, 118(4): 683–701

    Article  Google Scholar 

  43. Dhatt G, Touzot G. Une présentation de la méthode des éléments finis. France: Maloine, 1981

    MATH  Google Scholar 

  44. Whitney J M, Ashton J E. Effect of environment on the elastic response of layered composite plates. AIAA Journal, 1971, 9(9): 1708–1713

    Article  Google Scholar 

  45. Chen L W, Chen L Y. Thermal buckling of laminated composite plates. Journal of Thermal Stresses, 1987, 10(4): 345–356

    Article  Google Scholar 

  46. Chen W C, Liu W H. Thermal buckling of antisymmetric angle-ply laminated plates-an analytical levy-type solution. Journal of Thermal Stresses, 1993, 16(4): 401–419

    Article  Google Scholar 

  47. Chen L W, Brunelle E J, Chen L Y. Thermal buckling of initially stressed thick plates. Journal of Mechanical Design, 1982, 104(3): 557–564

    Article  Google Scholar 

  48. Jones R M. Thermal buckling of uniformly heated unidirectional and symmetric cross-ply laminated fiber-reinforced composite uniaxial in-plane restrained simply supported rectangular plates. Composites. Part A, Applied Science and Manufacturing, 2005, 36(10): 1355–1367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Benchabane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ounis, H., Tati, A. & Benchabane, A. Thermal buckling behavior of laminated composite plates: a finite-element study. Front. Mech. Eng. 9, 41–49 (2014). https://doi.org/10.1007/s11465-014-0284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-014-0284-z

Keywords

Navigation