Skip to main content

Minimal period estimates on P-symmetric periodic solutions of first-order mild superquadratic Hamiltonian systems

Abstract

With the aid of P-index iteration theory, we consider the minimal period estimates on P-symmetric periodic solutions of nonlinear P-symmetric Hamiltonian systems with mild superquadratic growth.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abbondandolo A. Index estimates for strongly indefinite functionals, periodic orbits and homoclinic solutions of first order Hamiltonian systems. Calc Var Partial Differential Equations, 2000, 11: 395–430

    MathSciNet  Article  Google Scholar 

  2. 2.

    Abbondandolo A. Morse Theory for Hamiltonian Systems. Chapman & Hall/CRC Res Notes in Math, Vol 425. London: Chapman & Hall/CRC, 2001

    Book  Google Scholar 

  3. 3.

    Chenciner A, Montgomery R. A remarkable periodic solution of the three body problem in the case of equal masses. Ann of Math, 2000, 152: 881–901

    MathSciNet  Article  Google Scholar 

  4. 4.

    Dong D, Long Y M. The iteration formula of the Maslov-type index theory with applications to nonlinear Hamiltonian systems. Trans Amer Math Soc, 1997, 349: 2619–2661

    MathSciNet  Article  Google Scholar 

  5. 5.

    Dong Y J. P-index theory for linear Hamiltonian systems and multiple solutions for nonlinear Hamiltonian systems. Nonlinearity, 2006, 19: 1275–1294

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ekeland I, Hofer H. Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems. Invent Math, 1985, 81: 155–188

    MathSciNet  Article  Google Scholar 

  7. 7.

    Hu X J, Sun S Z. Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit. Comm Math Phys, 2009, 290: 737–777

    MathSciNet  Article  Google Scholar 

  8. 8.

    Hu X J, Sun S Z. Stability of relative equilibria and Morse index of central configurations. C R Acad Sci Paris, Ser I, 2009, 347: 1309–1312

    MathSciNet  Article  Google Scholar 

  9. 9.

    Hu X J, Sun S Z. Morse index and the stability of closed geodesics. Sci China Math, 2010, 53: 1207–1212

    MathSciNet  Article  Google Scholar 

  10. 10.

    Liu C G. Maslov P-index theory for a symplectic path with applications. Chin Ann Math Ser B, 2006, 27(4): 441–458

    MathSciNet  Article  Google Scholar 

  11. 11.

    Liu C G. Periodic solutions of asymptotically linear delay differential systems via Hamiltonian systems. J Differential Equations, 2012, 252: 5712–5734

    MathSciNet  Article  Google Scholar 

  12. 12.

    Liu C G. Relative index theories and applications. Topol Methods Nonlinear Anal, 2017, 49: 587–614

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Liu C G. Index Theory in Nonlinear Analysis. Berlin/Beijing: Springer/Science Press, 2019

    Book  Google Scholar 

  14. 14.

    Liu C G, Long Y M. Iteration inequalities of the Maslov-type index theory with applications. J Differential Equations, 2000, 165: 355–376

    MathSciNet  Article  Google Scholar 

  15. 15.

    Liu C G, Tang S S. Maslov (P, ω)-index theory for symplectic paths. Adv Nonlinear Stud, 2015, 15: 963–990

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Liu C G, Tang S S. Iteration inequalities of the Maslov P-index theory with applications. Nonlinear Anal, 2015, 127: 215–234

    MathSciNet  Article  Google Scholar 

  17. 17.

    Liu C G, Tang S S. Subharmonic Pl-solutions of first order Hamiltonian systems. J Math Anal Appl, 2017, 453: 338–359

    MathSciNet  Article  Google Scholar 

  18. 18.

    Liu C G, Zhou B X. Minimal P-symmetric period problem of first-order autonomous Hamiltonian systems. Front Math China, 2017, 12(3): 641–654

    MathSciNet  Article  Google Scholar 

  19. 19.

    Long Y M. Index Theory for Symplectic Paths with Applications. Progr Math, Vol 207. Basel: Birkhäuser Verlag, 2002

    Book  Google Scholar 

  20. 20.

    Rabinowitz P H. Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31: 157–184

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Youth Fund Programs of the Science and Technology Department in Shanxi (Grant No. 201901D211430), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2019L0766), and the Doctoral Scientific Research Foundation of Shanxi Datong University. The second author was partially supported by the National Natural Science Foundation of China (Grant No. 11790271), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011019), and the Innovation and Development Project of Guangzhou University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chungen Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, C. Minimal period estimates on P-symmetric periodic solutions of first-order mild superquadratic Hamiltonian systems. Front. Math. China 16, 239–253 (2021). https://doi.org/10.1007/s11464-021-0903-z

Download citation

Keywords

  • Hamiltonian system
  • P-symmetric periodic solution
  • P-index
  • minimal period

MSC2020

  • 34B05
  • 37B30
  • 58E05
  • 70H05