Skip to main content

Proper resolutions and Gorensteinness in extriangulated categories


Let (\(\mathscr{C},\mathbb{E},\frak{s}\)) be an extriangulated category with a proper class ξ of \(\mathbb{E}\)-triangles, and \(\mathscr{W}\) an additive full subcategory of (\(\mathscr{C},\mathbb{E},\frak{s}\)). We provide a method for constructing a proper \(\mathscr{W}\)(ξ)-resolution (resp., coproper \(\mathscr{W}\)(ξ)-coresolution) of one term in an \(\mathbb{E}\)-triangle in ξ from that of the other two terms. By using this way, we establish the stability of the Gorenstein category \(\mathscr{G}\mathscr{W}\)(ξ) in extriangulated categories. These results generalize the work of Z. Y. Huang [J. Algebra, 2013, 393: 142–169] and X. Y. Yang and Z. C. Wang [Rocky Mountain J. Math., 2017, 47: 1013–1053], but the proof is not too far from their case. Finally, we give some applications about our main results.

This is a preview of subscription content, access via your institution.


  1. 1.

    Beligiannis A. Relative homological algebra and purity in triangulated categories. J Algebra, 2000, 227: 268–361

    MathSciNet  Article  Google Scholar 

  2. 2.

    Hu J S, Zhang D D, Zhou P Y. Proper classes and Gorensteinness in extriangulated categories. J Algebra, 2020, 551: 23–60

    MathSciNet  Article  Google Scholar 

  3. 3.

    Huang Z Y. Proper resolutions and Gorenstein categories. J Algebra, 2013, 393: 142–169

    MathSciNet  Article  Google Scholar 

  4. 4.

    Ma X, Zhao T W, Huang Z Y. Resolving subcategories of triangulated categories and relative homological dimension. Acta Math Sinica, 2017, 33: 1513–1535

    MathSciNet  Article  Google Scholar 

  5. 5.

    Nakaoka N, Palu Y. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah Topol Geom Differ Categ, 2019, 60(2): 117–193

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Ren W, Liu Z K. Gorenstein homological dimensions for triangulated categories. J Algebra, 2014, 410: 258–276

    MathSciNet  Article  Google Scholar 

  7. 7.

    Sather-Wagstaff S, Sharif T, White D. Stability of Gorenstein categories. J Lond Math Soc, 2008, 77: 481–502

    MathSciNet  Article  Google Scholar 

  8. 8.

    Wang Z P, Guo S T, Liang C L. Stability of Gorenstein objects in triangulated categories. Sci Sin Math (Chin Ser), 2017, 47: 349–356 (in Chinese)

    Article  Google Scholar 

  9. 9.

    Yang X Y. Notes on proper class of triangles. Acta Math Sinica (Engl Ser), 2013, 29: 2137–2154

    MathSciNet  Article  Google Scholar 

  10. 10.

    Yang X Y. Model structures on triangulated categories. Glasg Math J, 2015, 57: 263–284

    MathSciNet  Article  Google Scholar 

  11. 11.

    Yang X Y, Wang Z C. Proper resolutions and Gorensteiness in triangulated categories. Rocky Mountain J Math, 2017, 47: 1013–1053

    MathSciNet  Article  Google Scholar 

  12. 12.

    Zhou P Y, Zhu B. Triangulated quotient categories revisited. J Algebra, 2018, 502: 196–232

    MathSciNet  Article  Google Scholar 

Download references


This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11771212, 11901190, 11671221), Qing Lan Project of Jiangsu Province, Jiangsu Government Scholarship for Overseas Studies (Grant No. JS-2019-328), Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ3205), and Scientific Research Fund of Hunan Provincial Education Department (Grant No. 19B239).

Author information



Corresponding author

Correspondence to Dondong Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Zhang, D. & Zhou, P. Proper resolutions and Gorensteinness in extriangulated categories. Front. Math. China 16, 95–117 (2021).

Download citation


  • Proper resolution
  • coproper coresolution
  • extriangulated categories
  • Gorenstein categories


  • 18G80
  • 18E10
  • 18G25
  • 18G10