Skip to main content
Log in

Critical Points of Solutions to Exterior Boundary Problems

  • Research Article
  • Published:
Frontiers of Mathematics Aims and scope Submit manuscript

Abstract

In this article, we mainly study the critical points of solutions to the Laplace equation with Dirichlet boundary conditions in an exterior domain in ℝ2. Based on the fine analysis about the structures of connected components of the super-level sets {x ∈ ℝ2 Ω: u(x) > t} and sub-level sets {x ∈ ℝ2 Ω: u(x) < t} for some t, we get the geometric distributions of interior critical point sets of solutions. Exactly, when Ω is a smooth bounded simply connected domain, \(u{|_{\partial \Omega }} = \psi (x),\,\,{\lim _{|x| \to \infty }}u(x) = - \infty \) and ψ(x) has K local maximal points on ∂Ω, we deduce that \(\sum\nolimits_{i = 1}^l {{m_i} \le K} \), where m1, …, ml; are the multiplicities of interior critical points x1, …, xl; of solution u respectively. In addition, when ψ(x) has only K global maximal points and K equal local minima relative to ℝ2 Ω on ∂Ω, we have that \(\sum\nolimits_{i = 1}^l {{m_i} = K} \). Moreover, when Ω is a domain consisting of l disjoint smooth bounded simply connected domains, we deduce that \(\sum\nolimits_{{x_i} \in \Omega } {{m_i} + {1 \over 2}} \sum\nolimits_{{x_j} \in \partial \Omega } {{m_j} = l - 1} \), and the critical points are contained in the convex hull of the l simply connected domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti G.S., Bal G., Di Cristo M., Critical points for elliptic equations with prescribed boundary conditions. Arch. Ration. Mech. Anal., 2017, 226(1): 117–141

    Article  MathSciNet  Google Scholar 

  2. Alessandrini G., Critical points of solutions of elliptic equations in two variables. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1987, 14(2): 229–256

    MathSciNet  Google Scholar 

  3. Alessandrini G., Magnanini R., The index of isolated critical points and solutions of elliptic equations in the plane. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1992, 19(4): 567–589

    MathSciNet  Google Scholar 

  4. Alessandrini G., Magnanini R., Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions. SIAM J. Math. Anal., 1994, 25(5): 1259–1268

    Article  MathSciNet  Google Scholar 

  5. Axler S., Bourdon P., Ramey W., Harmonic Function Theory, 2nd Edition. Grad. Texts in Math., Vol. 137, New York: Springer-Verlag, 2001

    Book  Google Scholar 

  6. Cabre X., Chanillo S., Stable solutions of semilinear elliptic problems in convex domains. Selecta Math. (N.S.), 1998, 4(1): 1–10

    Article  MathSciNet  Google Scholar 

  7. Caffarelli L.A., Friedman A., Convexity of solutions of semilinear elliptic equations. Duke Math. J., 1985, 52(2): 431–456

    Article  MathSciNet  Google Scholar 

  8. Cecchini S., Magnanini R., Critical points of solutions of degenerate elliptic equations in the plane. Calc. Var. Partial Differential Equations, 2010, 39(1/2): 121–138

    Article  MathSciNet  Google Scholar 

  9. Cheeger J., Naber A., Valtorta D., Critical sets of elliptic equations. Comm. Pure Appl. Math., 2015, 68(2): 173–209

    Article  MathSciNet  Google Scholar 

  10. Chen J.T., Huang W.H., Convexity of capillary surfaces in the outer space. Invent. Math., 1982, 67(2): 253–259

    Article  MathSciNet  Google Scholar 

  11. De Regibus F., Grossi M., Mukherjee D., Uniqueness of the critical point for semi-stable solutions in R2. Calc. Var. Partial Differential Equations, 2021, 60 (1): Paper No. 25, 13 pp.

  12. Deng H.Y., Liu H.R., Tian L., Critical points of solutions to a quasilinear elliptic equation with nonhomogeneous Dirichlet boundary conditions. J. Differential Equations, 2018, 265(9): 4133–4157

    Article  MathSciNet  Google Scholar 

  13. Deng H.Y., Liu H.R., Tian L., Critical points of solutions for the mean curvature equation in strictly convex and nonconvex domains. Israel J. Math., 2019, 233(1): 311–332

    Article  MathSciNet  Google Scholar 

  14. Deng H.Y., Liu H.R., Tian L., Classification of singular set of solutions to elliptic equations. Commun. Pure Appl. Anal., 2020, 19(6): 2949–2964

    Article  MathSciNet  Google Scholar 

  15. Deng H.Y., Liu H.R., Yang X.P., Critical points of solutions to a kind of linear elliptic equations in multiply connected domains. Israel J. Math., 2022, 249(2): 935–971

    Article  MathSciNet  Google Scholar 

  16. Enciso A., Peralta-Salas D., Critical points and level sets in exterior boundary problems. Indiana Univ. Math. J., 2009, 58(4): 1947–1969

    Article  MathSciNet  Google Scholar 

  17. Enciso A., Peralta-Salas D., Critical points of Green’s functions on complete manifolds. J. Differential Geom., 2012, 92(1): 1–29

    Article  MathSciNet  Google Scholar 

  18. Gergen J.J., Note on the Green function of a star-shaped three dimensional region. Amer. J. Math., 1931, 53(4): 746–752

    Article  MathSciNet  Google Scholar 

  19. Grossi M., Luo P., On the number and location of critical points of solutions of nonlinear elliptic equations in domains with a small hole. 2020, arXiv:2003.03643

  20. Han Q., Lin F.H., Elliptic Partial Differential Equations, 2nd Edition. Courant Lecture Notes in Mathematics, Vol. 1, Courant Institute of Mathematical Sciences, Providence, RI: AMS, 2011

    Google Scholar 

  21. Hartman P., Wintner A., On the local behavior of solutions of non-parabolic partial differential equations. Amer. J. Math., 1953, 75: 449–476

    Article  MathSciNet  Google Scholar 

  22. Hartman P., Wintner A., On the local behavior of solutions of non-parabolic partial differential equations. III. Approximations by spherical harmonics. Amer. J. Math., 1955, 77: 453–474

    Article  MathSciNet  Google Scholar 

  23. Kawohl B., Starshapedness of level sets for the obstacle problem and for the capacitory potential problem. Proc. Amer. Math. Soc., 1983, 89(4): 637–640

    Article  MathSciNet  Google Scholar 

  24. Kawohl B., Open Problems Connected with Level Sets of Harmonic Functions. Lecture Notes in Mathematics, Vol. 1344, Berlin: Springer-Verlag, 2007

    Google Scholar 

  25. Magnanini R., An introduction to the study of critical points of solutions of elliptic and parabolic equations. Rend. Istit. Mat. Univ. Trieste, 2016, 48: 121–166

    MathSciNet  Google Scholar 

  26. Naber A., Valtorta D., Volume estimates on the critical sets of solutions to elliptic PDEs. Comm. Pure Appl. Math., 2017, 70(10): 1835–1897

    Article  MathSciNet  Google Scholar 

  27. Sakaguchi S., Critical points of solutions to the obstacle problem in the plane. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 1994, 21(2): 157–173

    MathSciNet  Google Scholar 

  28. Salani P., Starshapedness of level sets of solutions to elliptic PDEs. Appl. Anal., 2005, 84(12): 1185–1197

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referees for the very careful reading and many very valuable suggestions which have helped to improve the presentation of this paper. The work is supported by NSFC (Nos. 12001276, 12071219, 12271293, 12141104, 12326303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyun Deng.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Liu, F. & Liu, H. Critical Points of Solutions to Exterior Boundary Problems. Front. Math 19, 73–88 (2024). https://doi.org/10.1007/s11464-021-0288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-021-0288-z

Keywords

MSC2020

Navigation