Skip to main content
Log in

Ground States for DNLS Equation with Periodic or Asymptotically Periodic Potential

  • Research Article
  • Published:
Frontiers of Mathematics Aims and scope Submit manuscript

Abstract

We study the existence of ground state solutions for a class of discrete nonlinear Schrödinger equation with a sign-changing potential which is periodic or asymptotically periodic. The resulting problem engages two major difficulties: one is that the associated functional is strongly indefinite, the second is that, due to the asymptotically periodic assumption, the associated functional loses the ℤ-translation invariance, and many effective methods for periodic problems cannot be applied to asymptotically periodic ones. These enables us to develop a direct approach to find ground state solutions with asymptotically periodic potential. Two types of ground state solutions are obtained with some new super-quadratic conditions on nonlinearity which are weaker that some well-known ones. Moreover, our conditions can also be used to significantly improve the well-known results of the corresponding continuous nonlinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brazhnyi V.A., Konotop V.V., Theory of nonlinear matter waves in optical lattices. Modern Phys. Lett. B, 2004, 18(14): 627–651

    Article  Google Scholar 

  2. Chen J.H., Cheng B.T., Huang X.J., Ground state solutions for a class of quasilinear Schrödinger equations with Choquard type nonlinearity. Appl. Math. Lett., 2020, 102: 106141, 7 pp.

    Article  MathSciNet  Google Scholar 

  3. Chen G.W., Ma S.W., Discrete nonlinear Schrödinger equations with superlinear nonlinearities. Appl. Math. Comput., 2012, 218(9): 5496–5507

    MathSciNet  Google Scholar 

  4. Chen G.W., Ma S.W., Ground state and geometrically distinct solitons of discrete nonlinear Schrödinger equations with saturable nonlinearities. Stud. Appl. Math., 2013, 131(4): 389–413

    Article  MathSciNet  Google Scholar 

  5. Chen G.W., Ma S.W., Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or superlinear terms. Appl. Math. Comput., 2014, 232: 787–798

    MathSciNet  Google Scholar 

  6. Chen G.W., Schechter M., Non-periodic discrete Schrödinger equations: ground state solutions. Z. Angew. Math. Phys., 2016, 67 (3): Art. 72, 15 pp.

  7. Christiansen P.L., Scott A.C., Davydov’s Soliton Revisited: Self-trapping of Vibrational Energy in Protein. New York, NY: Springer, 1990

    Book  Google Scholar 

  8. Christodoulides D.N., Lederer F., Silberberg Y., Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature, 2003, 424: 817–823

    Article  Google Scholar 

  9. Davydov A.S., Solitons and energy transfer along protein molecules. J. Theoret. Biol., 1977, 66(2): 379–387

    Article  Google Scholar 

  10. Flach S., Gorbach A.V., Discrete breathers—advance in theory and applications. Phys. Rep., 2008, 467(1–3): 1–116

    Article  Google Scholar 

  11. Kevrekidis P.G., Rasmussen K.Ø., Bishop A.R., The discrete nonlinear Schrödinger equation: a survey of recent results. Internat. J. Modern Phys. B, 2001, 15(21): 2833–2900

    Article  Google Scholar 

  12. Kivshar Y.S., Agrawal G.P., Optical Solitons: From Fibers to Photonic Crystals. San Diego, CA: Academic Press, 2003

    Google Scholar 

  13. Kopidakis G., Aubry S., Tsironis G.P., Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett., 2001, 87: 165501, 4 pp.

    Article  Google Scholar 

  14. Li G.B., Szulkin A., An asymptotically periodic Schrödinger equation with indefinite linear part. Commun. Contemp. Math., 2002, 4(4): 763–776

    Article  MathSciNet  Google Scholar 

  15. Lin G.H., Zhou Z., Yu J.S., Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic potentials. J. Dynam. Differential Equations, 2020, 32(2): 527–555

    Article  MathSciNet  Google Scholar 

  16. Livi R., Franzosi R., Oppo G.-L., Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation. Phys. Rev. Lett., 2006, 97: 060401

    Article  Google Scholar 

  17. Mawhin J., Periodic solutions of second order nonlinear difference systems with ϕ-Laplacian: a variational approach. Nonlinear Anal., 2012, 75(12): 4672–4687

    Article  MathSciNet  Google Scholar 

  18. Morsch O., Oberthaler M., Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys., 2006, 78: 179–215

    Article  Google Scholar 

  19. Pankov A., Gap solitons in periodic discrete nonlinear Schrödinger equations. Nonlinearity, 2006, 19(1): 27–40

    Article  MathSciNet  Google Scholar 

  20. Pankov A., Gap solitons in periodic discrete nonlinear Schrödinger equations, II. A generalized Nehari manifold approach. Discrete Contin. Dyn. Syst., 2007, 19(2): 419–430

    Article  MathSciNet  Google Scholar 

  21. Pankov A., Rothos V., Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2008, 464(2100): 3219–3236

    MathSciNet  Google Scholar 

  22. Pankov A., Zhang G., Standing wave solutions for discrete nonlinear Schrödinger equations with unbounded potentials and saturable nonlinearity. J. Math. Sci. (N.Y.), 2011, 177(1): 71–82

    Article  MathSciNet  Google Scholar 

  23. Schechter M., Zou W.M., Weak linking theorems and Schrödinger equations with critical Sobolev exponent. ESAIM Control Optim. Calc. Var., 2003, 9: 601–619

    Article  MathSciNet  Google Scholar 

  24. Shi H.P., Gap solitons in periodic discrete Schrödinger equations with nonlinearity. Acta Appl. Math., 2010, 109(3): 1065–1075

    Article  MathSciNet  Google Scholar 

  25. Shi H.P., Zhang H.Q., Existence of gap solitons in periodic discrete nonlinear Schrödinger equations. J. Math. Anal. Appl., 2010, 361(2): 411–419

    Article  MathSciNet  Google Scholar 

  26. Szulkin A., Weth T., Ground state solutions for some indefinite variational problems. J. Funct. Anal., 2009, 257(12): 3802–3822

    Article  MathSciNet  Google Scholar 

  27. Tang X.H., Non-Nehari manifold method for superlinear Schrödinger equation. Taiwanese J. Math., 2014, 18(6): 1957–1979

    Article  MathSciNet  Google Scholar 

  28. Tang X.H., New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation. Adv. Nonlinear Stud., 2014, 14(2): 361–373

    Article  MathSciNet  Google Scholar 

  29. Tang X.H., Non-Nehari manifold method for asymptotically periodic Schrödinger equations. Sci. China Math., 2015, 58(4): 715–728

    Article  MathSciNet  Google Scholar 

  30. Tang X.H., Chen S.T., Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differential Equations, 2017, 56 (4): Paper No. 110, 25 pp.

  31. Tang X.H., Chen S.T., Lin X.Y., Yu J.S., Ground state solutions of Nehari–Pankov type for Schrödinger equations with local super-quadratic conditions. J. Differential Equations, 2020, 268(8): 4663–4690

    Article  MathSciNet  Google Scholar 

  32. Yang M.B., Chen W.X., Ding Y.H., Solutions for discrete periodic Schrödinger equations with spectrum 0. Acta Appl. Math., 2010, 110(3): 1475–1488

    Article  MathSciNet  Google Scholar 

  33. Zhang G., Pankov A., Standing waves of the discrete nonlinear Schrödinger equations with growing potentials. Commun. Math. Anal., 2008, 5(2): 38–49

    MathSciNet  Google Scholar 

  34. Zhang G., Pankov A., Standing wave solutions of the discrete nonlinear Schrödinger equations with unbounded potentials. Appl. Anal., 2010, 89(9): 1541–1557

    Article  MathSciNet  Google Scholar 

  35. Zhang J., Chen J.H., Li Q.Q., Zhang W., Concentration behavior of semiclassical solutions for Hamiltonian elliptic system. Adv. Nonlinear Anal., 2021, 10(1): 233–260

    Article  MathSciNet  Google Scholar 

  36. Zhang W., Chen J., Mi H.L., Ground states and multiple solutions for Hamiltonian elliptic system with gradient term. Adv. Nonlinear Anal., 2021, 10(1): 331–352

    Article  MathSciNet  Google Scholar 

  37. Zhou Z., Yu J.S., On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems. J. Differential Equations, 2010, 249(5): 1199–1212

    Article  MathSciNet  Google Scholar 

  38. Zhou Z., Yu J.S., Chen Y.M., On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity. Nonlinearity, 2010, 23(7): 1727–1740

    Article  MathSciNet  Google Scholar 

  39. Zhou Z., Yu J.S., Chen Y.M., Homoclinic solutions in periodic difference equations with saturable nonlinearity. Sci. China Math., 2011, 54(1): 83–93

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their contribution to improve the quality of the manuscript. This work was supported in part by the National Natural Science Foundation of China (No. 11301297) and Natural Science Foundation of Hubei Province and Yichang City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chen.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Meng, L. & Tang, X. Ground States for DNLS Equation with Periodic or Asymptotically Periodic Potential. Front. Math 19, 467–494 (2024). https://doi.org/10.1007/s11464-021-0271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-021-0271-8

Keywords

MSC2020

Navigation