Skip to main content
Log in

Reducible solution to a quaternion tensor equation

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We establish necessary and sufficient conditions for the existence of the reducible solution to the quaternion tensor equation \(\mathscr{A}{ * _N}\mathscr{X}{ * _N}\mathscr{B} = \mathscr{C}\) via Einstein product using Moore-Penrose inverse, and present an expression of the reducible solution to the equation when it is solvable. Moreover, to have a general solution, we give the solvability conditions for the quaternion tensor equation \({\mathscr{A}_1}{ * _N}{\mathscr{X}_1}{ * _M}{\mathscr{B}_1} + {\mathscr{A}_1}{ * _N}{\mathscr{X}_2}{ * _M}{\mathscr{B}_2} + {\mathscr{A}_2}{ * _N}{\mathscr{X}_3}{ * _M}{\mathscr{B}_2} = \mathscr{C}\), which plays a key role in investigating the reducible solution to \(\mathscr{A}{ * _N}\mathscr{X}{ * _N}\mathscr{B} = \mathscr{C}\). The expression of such a solution is also presented when the consistency conditions are met. In addition, we show a numerical example to illustrate this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artzouni M, Gouteux J P. A parity-structured matrix model for tsetse populations. Math Biosci, 2006, 204(2): 215–231

    Article  MathSciNet  MATH  Google Scholar 

  2. Bader B W, Kolda T G. Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans Math Software, 2006, 32(4): 635–653

    Article  MathSciNet  MATH  Google Scholar 

  3. Behera R, Mishra D. Further results on generalized inverses of tensors via the Einstein product, Linear Multilinear Algebra, 2017, 65(8): 1662–1682

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Israel A, Greville T N E. Generalized Inverses: Theory and Applications. New York: McGraw-Hill, 1974

    MATH  Google Scholar 

  5. Bihan N L, Mars J. Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing. Signal Process, 2004, 84(7): 1177–1199

    Article  MATH  Google Scholar 

  6. Bouldin R. The pseudo-inverse of a product. SIAM J Appl Math, 1973, 24(4): 489–495

    Article  MathSciNet  MATH  Google Scholar 

  7. Brazell M, Li N, Navasca C, Tamon C. Solving multilinear systems via tensor inversion. SIAM J Matrix Anal Appl, 2013, 34(2): 542–570

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6(2): 507–520

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen Z, Lu L Z. A projection method and Kronecker product preconditioner for solving Sylvester tensor equations. Sci China Math, 2012, 55(6): 1281–1292

    Article  MathSciNet  MATH  Google Scholar 

  10. Cvetković-Ilića D, Wang Q W, Xu Q X. Douglas’ + Sebestyen’s lemmas = a tool for solving an operator equation problem. J Math Anal Appl, 2019, 482(2): 123599

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding W, Qi L, Wei Y. Fast Hankel tensor-vector product and its application to exponential data fitting. Numer Linear Algebra Appl, 2015, 22(5): 814–832

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding W, Qi L, Wei Y. Inheritance properties and sum-of-squares decomposition of Hankel tensors: theory and algorithms. BIT, 2017, 57(1): 169–190

    Article  MathSciNet  MATH  Google Scholar 

  13. Einstein A. The foundation of the general theory of relativity. Ann Phys, 1916, 49(7): 769–822

    Article  Google Scholar 

  14. Guan Y, Chu D L. Numerical computation for orthogonal low-rank approximation of tensors. SIAM J Matrix Anal Appl, 2019, 40(3): 1047–1065

    Article  MathSciNet  MATH  Google Scholar 

  15. Guan Y, Chu M T, Chu D L. Convergence analysis of an SVD-based algorithm for the best rank-1 tensor approximation. Linear Algebra Appl, 2018, 555: 53–69

    Article  MathSciNet  MATH  Google Scholar 

  16. Guan Y, Chu M T, Chu D L. SVD-based algorithms for the best rank-1 approximation of a symmetric tensor. SIAM J Matrix Anal Appl, 2018, 39(3): 1095–1115

    Article  MathSciNet  MATH  Google Scholar 

  17. Hamilton W R. Elements of Quaternions. Cambridge: Cambridge Univ Press, 1866

    Google Scholar 

  18. He Z H. The general solution to a system of coupled Sylvester-type quaternion tensor equations involving η-Hermicity. Bull Iranian Math Soc, 2019, 45: 1407–1430

    Article  MathSciNet  MATH  Google Scholar 

  19. He Z H, Navasca C, Wang Q W. Tensor decompositions and tensor equations over quaternion algebra. arXiv: 1710.07552

  20. He Z H, Wang Q W. The η-bihermitian solution to a system of real quaternion matrix equations. Linear Multilinear Algebra, 2014, 62(11): 1509–1528

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang G X, Yin F, Guo K. An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB = C. J Comput Appl Math, 2008, 212(2): 231–244

    Article  MathSciNet  MATH  Google Scholar 

  22. Kirkland S J, Neumann M, Xu J H. Transition matrices for well-conditioned Markov chains. Linear Algebra Appl, 2007, 424(1): 118–131

    Article  MathSciNet  MATH  Google Scholar 

  23. Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Rev, 2009, 51(3): 455–500

    Article  MathSciNet  MATH  Google Scholar 

  24. Lai W M, Rubin D H, Krempl E. Introduction to continuum mechanics. Burlington: Butterworth-Heinemann/Elsevier, 2009

    MATH  Google Scholar 

  25. Lei J Z, Wang C Y. On the reducibility of compartmental matrices. Comput Biol Med, 2008, 38(8): 881–885

    Article  Google Scholar 

  26. Leo S D, Scolarici G. Right eigenvalue equation in quaternionic quantum mechanics. J Phys A, 2000, 33(15): 2971–2995

    Article  MathSciNet  MATH  Google Scholar 

  27. Li L, Zheng B D. Sensitivity analysis of the Lyapunov tensor equation. Linear Multilinear Algebra, 2019, 67(3): 555–572

    Article  MathSciNet  MATH  Google Scholar 

  28. Li L, Zheng B D, Tian Y B. Algebraic Lyapunov and Stein stability results for tensors. Linear Multilinear Algebra, 2018, 66(4): 731–741

    Article  MathSciNet  MATH  Google Scholar 

  29. Li T, Wang Q W, Duan X F. Numerical algorithms for solving discrete Lyapunov tensor equation. J Comput Appl Math, 2019, 370: 112676

    Article  MathSciNet  MATH  Google Scholar 

  30. Li T, Wang Q W, Zhang X F. Hermitian and skew-Hermitian splitting methods for solving a tensor equation. Int J Comput Math, https://doi.org/10.1080/00207160.2020.1815717

  31. Liang M L, Zheng B, Zhao R J. Tensor inversion and its application to tensor equation with Einstein product. Linear Multilinear Algebra, 2019, 67(4): 843–870

    Article  MathSciNet  MATH  Google Scholar 

  32. Liao A P, Bai Z Z. Least-squares solution of AXB = D over symmetric positive semi-definite matrices X. J Comput Math, 2003 21: 175–182

    MathSciNet  MATH  Google Scholar 

  33. Liao A P, Bai Z Z, Lei Y. Best approximate solution of matrix equation AXB + CYDE. SIAM J Matrix Anal Appl, 2005, 27(3): 675–688

    Article  MathSciNet  MATH  Google Scholar 

  34. Nie X R, Wang Q W, Zhang Y. A system of matrix equations over the quaternion algebra with applications. Algebra Colloq, 2017, 24(2): 233–253

    Article  MathSciNet  MATH  Google Scholar 

  35. Pei S C, Chang J H, Ding J J. Quaternion matrix singular value decomposition and its applications for color image processing. In: International Conference on Image Processing IEEE Xplore 2003 (Cat No 03CH37429). Barcelona, Spain, 2003, I-805

  36. Peng Z Y. The centro-symmetric solutions of linear matrix equation AXB = C and its optimal approximation. Chinese J Engrg Math, 2003, 20(6): 60–64

    Google Scholar 

  37. Qi L. Eigenvalues of a real supersymmetric tensors. J Symbolic Comput, 2005, 40: 1302–1324

    Article  MathSciNet  MATH  Google Scholar 

  38. Qi L, Chen H, Chen Y. Tensor eigenvalues and their applications. Adv Mech Math, 2018

  39. Qi L, Luo Z Y. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017

    Book  MATH  Google Scholar 

  40. Rehman A, Wang Q W, He Z H. Solution to a system of real quaternion matrix equations encompassing η-Hermicity. Appl Math Comput, 2015, 265: 945–957

    MathSciNet  MATH  Google Scholar 

  41. Rodman L. Topics in Quaternion Linear Algebra. Princeton: Princeton Univ Press, 2014

    Book  MATH  Google Scholar 

  42. Santesso P, Valcher M E. On the zero pattern properties and asymptotic behavior of continuous-time positive system trajectories. Linear Algebra Appl, 2007, 425: 283–302

    Article  MathSciNet  MATH  Google Scholar 

  43. Shao J Y. A general product of tensors with applications. Linear Algebra Appl, 2013, 439: 2350–2366

    Article  MathSciNet  MATH  Google Scholar 

  44. Shao J Y, You L H. On some properties of three different types of triangular blocked tensors. Linear Algebra Appl, 2016, 511: 110–140

    Article  MathSciNet  MATH  Google Scholar 

  45. Shi X H, Wei Y M, Ling S Y. Backward error and perturbation bounds for high order Sylvester tensor equation. Linear Multilinear Algebra, 2013, 61(10): 1436–1446

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun L Z, Zheng B D, Bu C J, Wei Y M. Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra, 2016, 64(4): 686–698

    Article  MathSciNet  MATH  Google Scholar 

  47. Took C C, Mandic D P. Quaternion-valued stochastic gradient-based adaptive IIR filtering. IEEE Trans Signal Process, 2010, 58(7): 3895–3901

    Article  MathSciNet  MATH  Google Scholar 

  48. Took C C, Mandic D P. Augmented second-order statistics of quaternion random signals. Signal Process, 2011, 91(2): 214–224

    Article  MATH  Google Scholar 

  49. Wang Q W. The general solution to a system of real quaternion matrix equations. Comput Math Appl, 2005, 49(5): 665–675

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang Q W, Chang H X, Lin C Y. P-(skew)symmetric common solutions to a pair of quaternion matrix equations. Appl Math Comput, 2008, 195(2): 721–732

    MathSciNet  MATH  Google Scholar 

  51. Wang Q W, Lv R Y, Zhang Y. The least-squares solution with the least norm to a system of tensor equations over the quaternion algebra. Linear Multilinear Algebra, https://doi.org/10.1080/03081087.2020.1779172

  52. Wang Q W, Wang X X. Arnoldi method for large quaternion right eigenvalue problem. J Sci Comput, 2020, 82(3)

  53. Wei M S, Li Y, Zhang F X, Zhao J L. Quaternion Matrix Computations. New York: Nova Science Publishers, Inc, 2018

    Google Scholar 

  54. Wei Y M, Ding W Y. Theory and Computation of Tensors: Multi-Dimensional Arrays. London: Elsevier/Academic Press, 2016

    MATH  Google Scholar 

  55. Yuan S F, Wang Q W, Duan X F. On solutions of the quaternion matrix equation AX = B and their applications in color image restoration. Appl Math Comput, 2013, 221: 10–20

    MathSciNet  MATH  Google Scholar 

  56. Zhang F Z. Quaternions and matrices of quaternions. Linear Algebra Appl, 1997, 251: 21–57

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang X F, Wang Q W, Li T. The accelerated overrelaxation splitting method for solving symmetric tensor equations. Comput Appl Math, 2020, 39(3): 1–14

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11971294).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Wen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Wang, QW. Reducible solution to a quaternion tensor equation. Front. Math. China 15, 1047–1070 (2020). https://doi.org/10.1007/s11464-020-0865-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-020-0865-6

Keywords

MSC2020

Navigation