Skip to main content
Log in

Riemann-Hilbert approach to TD equation with nonzero boundary condition

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We extend the Riemann-Hilbert approach to the TD equation, which is a highly nonlinear differential integrable equation. Zero boundary condition at infinity for the TD equation is not suitable. Inverse scattering transform for this equation involves the singular Riemann-Hilbert problem, which means that the sectionally analytic functions have singularities on the boundary curve. Regularization procedures of the singular Riemann-Hilbert problem for two cases, the general case and the case for reflectionless potentials, are considered. Solitonic solutions to the TD equation are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz M J, Biondini G, Prinari B. Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions. Inverse Problems, 2007, 23: 1711–1758

    Article  MathSciNet  MATH  Google Scholar 

  2. Asano N, Kato Y. Non-self-adjoint Zakharov-Shabat operator with a potential of the finite asymptotic values: I. Direct spectral and scattering problems. J Math Phys, 1981, 22: 2780–2793

    MATH  Google Scholar 

  3. Bikbaev R F. Influence of viscosity on the structure of shock waves in the mKdV model. J Math Sci, 1995, 77: 3042–3045

    Article  MathSciNet  Google Scholar 

  4. Biondini G, Kovacic G. Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J Math Phys, 2014, 55: 031506

    Article  MathSciNet  MATH  Google Scholar 

  5. Biondini G, Prinari B. On the spectrum of the Dirac operator and the existence of discrete eigenvalues for the defocusing nonlinear Schrödinger equation. Stud Appl Math, 2014, 132: 138–159

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen X J, Lam W K. Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Phys Rev E, 2004, 69: 066604

    Article  MathSciNet  Google Scholar 

  7. Deift P, Zhou X. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann Math, 1993, 137: 295–368

    MATH  Google Scholar 

  8. Demontis F, Prinari B, van der Mee C, Vitale F. The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions. Stud Appl Math, 2013, 131: 1–40

    Article  MathSciNet  MATH  Google Scholar 

  9. Faddeev L D, Takhtajan L A. Hamiltonian Methods in the Theory of Solitons. Berlin: Springer, 1987

    Book  MATH  Google Scholar 

  10. Frolov I S. Inverse scattering problem for the Dirac system on the whole line. Sov Math Dokl, 1972, 13: 1468–1472

    MATH  Google Scholar 

  11. Gardner C S, Greene J M, Kruskal M D, Miura R M. Method for solving the Kortewegde Vries equation. Phys Rev Lett, 1967, 19: 1095–1097

    Article  MATH  Google Scholar 

  12. Garnier J, Kalimeris K. Inverse scattering perturbation theory for the nonlinear Schrödinger equation with nonvanishing background. J Phys A: Math Gen, 2012, 45: 035202

    Article  MATH  Google Scholar 

  13. Gelash A A, Zakharov V E. Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability. Nonlinearity, 2014, 27: R1–R39

    Article  MathSciNet  MATH  Google Scholar 

  14. Geng X G, Wu L H, He G L. Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions. Phys D, 2011, 240: 1262–1288

    Article  MathSciNet  MATH  Google Scholar 

  15. Geng X G, Zeng X, Xue B. Algebro-geometric solutions of the TD hierarchy. Math Phys Anal Geom, 2013, 16: 229–251

    Article  MathSciNet  MATH  Google Scholar 

  16. Gerdjikov V S, Kulish P P. Completely integrable Hamiltonian systems connected with the non self-adjoint Dirac operator. Bulg J Phys, 1978, 5: 337–349 (in Russian)

    Google Scholar 

  17. Gu C H, Hu H S, Zhou Z X. Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry. Dordrecht: Springer, 2005

    Book  MATH  Google Scholar 

  18. Hirota H. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys Rev Lett, 1971, 27: 1192–1194

    Article  MATH  Google Scholar 

  19. Hirota R. A new form of Bäcklund transformation and its relation to the inverse scattering problem. Prog Theor Phys, 1974, 52: 1498–1512

    Article  MATH  Google Scholar 

  20. Ieda J, Uchiyama M, Wadati M. Inverse scattering method for square matrix nonlinear Schrödinger equation under nonvanishing boundary conditions. J Math Phys, 2007, 48: 013507

    Article  MathSciNet  MATH  Google Scholar 

  21. Kawata T, Inoue H. Inverse scattering method for nonlinear evolution equations under nonvanishing conditions. J Phys Soc Japan, 1978, 44: 1722–1729

    Article  MathSciNet  MATH  Google Scholar 

  22. Kawata T, Inoue H. Exact solutions of the derivative nonlinear Schrödinger equation under the nonvanishing conditions. J Phys Soc Japan, 1978, 44: 1968–1976

    Article  MathSciNet  MATH  Google Scholar 

  23. Kotlyarov V, Minakov A. Riemann-Hilbert problem to the modified Korteveg-de Vries equation: Long-time dynamics of the steplike initial data. J Math Phys, 2010, 51: 093506

    Article  MathSciNet  MATH  Google Scholar 

  24. Kulish P P, Manakov S V, Faddeev L D. Comparison of the exact quantum and quasiclassical results for a nonlinear Schrödinger equation. Theoret and Math Phys, 1976, 28: 615–620

    Article  Google Scholar 

  25. Lakshmanan M. Continuum spin system as an exactly solvable dynamical system. Phys Lett A, 1977, 61: 53–54

    Article  Google Scholar 

  26. Leon J. The Dirac inverse spectral transform: kinks and boomerons. J Math Phys, 1980, 21: 2572–2578

    Article  MathSciNet  MATH  Google Scholar 

  27. Ma Y C. The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud Appl Math, 1079, 60: 43–58

    Article  MATH  Google Scholar 

  28. Matveev V B, Salle M A. Darboux Transformation and Solitions. Berlin: Springer, 1991

    Book  Google Scholar 

  29. Mjølhus E. Nonlinear and the DNLS equation: oblique aspects. Physica Scripta, 1989, 40: 227–237

    Article  Google Scholar 

  30. Prinari B, Ablowitz M J, Biondini G. Inverse scattering transform for vector nonlinear Schrödinger equation with non-vanishing boundary conditions. J Math Phys, 2006, 47: 063508

    Article  MathSciNet  MATH  Google Scholar 

  31. Prinari B, Biondini G, Trubatch A D. Inverse scattering transform for the multicomponent nonlinear Schrödinger equation with nonzero boundary conditions. Stud Appl Math, 2010, 126: 245–302

    Article  MATH  Google Scholar 

  32. Prinari B, Vitale F, Biondini G. Dark-bright soliton solutions with nontrivial polarization interactions for the three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions. J Math Phys, 2015, 56: 071505

    Article  MathSciNet  MATH  Google Scholar 

  33. Prinari B. Vitale F. Inverse scattering transform for the focusing Ablowitz-Ladik system with nonzero boundary conditions. Stud Appl Math, 2016, 137: 28–52

    Google Scholar 

  34. Qiao Z J. A new completely integrable Liouville’s system produced by the Kaup-Newell eigenvalue problem. J Math Phys, 1993, 34: 3110–3120

    Article  MathSciNet  MATH  Google Scholar 

  35. Qiao Z J. A finite-dimensional integrable system and the involutive solutions of the higher-order Heisenberg spin chain equations. Phys Lett A, 1994, 186: 97–102

    Article  MathSciNet  MATH  Google Scholar 

  36. Qiao Z J. Non-dynamical r-matrix and algebraic-geometric solution for a discrete system. Chin Sci Bull, 1998, 43: 1149–1153

    Google Scholar 

  37. Rogers C, Schief W K. Bäcklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory. Cambridge: Cambridge Univ Press, 2002

    Book  MATH  Google Scholar 

  38. Steudel H. The hierarchy of multi-soliton solutions of the derivative nonlinear Schrödinger equation. J Phys A: Math Gen, 2003, 36: 1931–1946

    Article  MathSciNet  MATH  Google Scholar 

  39. Takhtajan L A. Integration of the continuous Heisenberg spin chain through the inverse scattering method. Phys Lett A, 1977, 64: 235–237

    Article  MathSciNet  Google Scholar 

  40. Tu G Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys, 1989, 30: 330–338

    Article  MathSciNet  MATH  Google Scholar 

  41. Tu G Z, Meng D Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. II. Acta Math Appl Sin, 1989, 5: 89–96

    Article  MathSciNet  MATH  Google Scholar 

  42. Vekslerchik V E, Konotop V V. Discrete nonlinear Schrödinger equation under nonvanishing boundary conditions. Inverse Probl, 1992, 8: 889–909

    Article  MATH  Google Scholar 

  43. Wahlquist H D, Estabrook F B. Bäcklund transformation for solutions of the Kortewegde Vries equation. Phys Rev Lett, 1973, 23: 1386–1389

    Article  Google Scholar 

  44. Wang S K, Guo H Y, Wu K. Inverse scattering transform and regular Riemann-Hilbert problem. Commun Theor Phys (Beijing), 1983, 2: 1169–1173

    Article  MathSciNet  Google Scholar 

  45. Wang S K, Guo H Y, Wu K. Principal Riemann-Hilbert problem and N-fold charged Kerr solution. Classical Quantum Gravity, 1984, 1: 378–384

    MathSciNet  Google Scholar 

  46. Zakharov V E, Gelash A A. Nonlinear stage of modulation instability. Phys Rev Lett, 2013, 111: 054101

    Article  Google Scholar 

  47. Zakharov V E, Shabat A B. Interaction between solitons in a stable medium. Sov Phys-JETP, 1973, 37: 823–828

    Google Scholar 

  48. Zakharov V E, Shabat A B. Integration of nonlinear equations of mathematical physics by the method of the inverse scattering. II. Funct Anal Appl, 1979, 13: 166–174

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhou R G. The finite-band solution of the Jaulent-Miodek equation. J Math Phys, 1997, 38: 2535–2546

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhou R G. A new (2 + 1)-dimensional integrable system and its algebro-geometric solution. Nuovo Cimento B, 2002, 117: 925–939

    MathSciNet  Google Scholar 

  51. Zhu J Y, Geng X G. Miura transformation for the TD hierarchy. Chin Phys Lett, 2006, 23: 1–3

    Article  Google Scholar 

  52. Zhu J Y, Wang L L. Kuznetsov-Ma solution and Akhmediev breather for TD equation. Commun Nonlinear Sci Numer Simul, 2019, 67: 555–567

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11471295, 11331008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Wang, L. & Geng, X. Riemann-Hilbert approach to TD equation with nonzero boundary condition. Front. Math. China 13, 1245–1265 (2018). https://doi.org/10.1007/s11464-018-0729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-018-0729-5

Keywords

MSC

Navigation