Skip to main content
Log in

Variational principle and zero temperature limits of asymptotically (sub)-additive projection pressure

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Let \(\{S_i\}_{i=1}^l\) be an iterated function system (IFS) on ℝd with an attractor K. Let (∑, σ) denote the one-sided full shift over the finite alphabet {1, 2,...,l}, and let π : ∑ → K be the coding map. Given an asymptotically (sub)-additive sequence of continuous functions ℱ = {fn}n⩾1; we define the asymptotically additive projection pressure Pπ(ℱ) and show the variational principle for Pπ(ℱ) under certain affne IFS. We also obtain variational principle for the asymptotically sub-additive projection pressure if the IFS satisfies asymptotically weak separation condition (AWSC). Furthermore, when the IFS satisfies AWSC, we investigate the zero temperature limits of the asymptotically sub-additive projection pressure Pπ(βℱ) with positive parameter β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ban J, Cao Y, Hu H. The dimensions of a non-conformal repeller and an average conformal repeller. Trans Amer Math Soc, 2010, 362: 727–751

    Article  MathSciNet  MATH  Google Scholar 

  2. Baraviera A, Leplaideur R, Lopes A. Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra. 29ff Coloquio Brasileiro e Matematica. Rio de Janeiro: IMPA, 2013

    MATH  Google Scholar 

  3. Barreira L. A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergodic Theory Dynam Systems, 1996, 16: 871–927

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreira L. Nonadditive thermodynamic formalism: equilibrium and Gibbs measures. Discrete Contin Dyn Syst, 2006, 16: 279–305

    Article  MathSciNet  MATH  Google Scholar 

  5. Bowen R. Topological entropy for noncompact sets. Trans Amer Math Soc, 1973, 184: 125–136

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowen R. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math, Vol 470. Berlin: Springer-Verlag, 1975

    Book  MATH  Google Scholar 

  7. Bowen R. Hausdorff dimension of quasicircles. Inst Hautes Etudes Sci Publ Math, 1979, 50: 11–25

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao Y, Feng D, Huang W. The thermodynamic formalism for sub-additive potentials. Discrete Contin Dyn Syst, 2008, 20: 639–657

    MathSciNet  MATH  Google Scholar 

  9. Catsigeras E, Zhao Y. Observable optimal state points of sub-additive potentials. Discrete Contin Dyn Syst, 2013, 33(4): 1375–1388

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen B, Ding B, Cao Y. The local variational principle of topological pressure for sub-additive potentials. Nonlinear Anal, 2010, 73: 3525–3536

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung N. Topological pressure and the variational principle for actions of sofic groups. Ergodic Theory Dynam Systems, 2013, 33(5): 1363–1390

    Article  MathSciNet  MATH  Google Scholar 

  12. Dooley A, Zhang G. Local Entropy Theory of a Random Dynamical System. Mem Amer Math Soc, Vol 233,No 1099. Providence: Amer Math Soc, 2015

    Google Scholar 

  13. Downarowicz T, Zhang G. Modeling potential as fiber entropy and pressure as entropy. Ergodic Theory Dynam Systems, 2015, 35(4): 1165–1186

    Article  MathSciNet  MATH  Google Scholar 

  14. Falconer K. A subadditive thermodynamic formalism for mixing repellers. J Phys A, 1988, 21: 737–742

    Article  MathSciNet  MATH  Google Scholar 

  15. Feng D. The variational principle for products of non-negative matrices. Nonlinearity, 2004, 17: 447–457

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng D, Hu H. Dimension theory of iterated function systems. Comm Pure Appl Math, 2009, 62: 1435–1500

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng D, Huang W. Lyapunov spectrum of asymptotically sub-additive potentials. Comm Math Phys, 2010, 297: 1–43

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang W, Ye X, Zhang G. Local entropy theory for a countable discrete amenable group action. J Funct Anal, 2011, 261(4): 1028–1082

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang W, Yi Y. A local variational principle of pressure and its applications to equilibrium states. Israel J Math, 2007, 161: 29–74

    Article  MathSciNet  MATH  Google Scholar 

  20. Keller G. Equilibrium States in Ergodic Theory. London Math Soc Stud Texts, Vol 42. Cambridge: Cambridge Univ Press, 1998

    Book  MATH  Google Scholar 

  21. Kerr D, Li H. Entropy and the variational principle for actions of sofic groups. Invent Math, 2011, 186(3): 501–558

    Article  MathSciNet  MATH  Google Scholar 

  22. Kingman J. Subadditive ergodic theory. Ann Probab, 1973, 1: 883–909

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma X, Chen E. Variational principles for relative local pressure with subadditive potentials. J Math Phys, 2013, 54(3): 465–478

    Article  MathSciNet  MATH  Google Scholar 

  24. Manning A, McCluskey H. Hausdorff dimension for horseshoes. Ergodic Theory Dynam Systems, 1983, 3: 251–260

    MathSciNet  MATH  Google Scholar 

  25. Mummert A. The thermodynamic formalism for almost-additive sequences. Discrete Contin Dyn Syst, 2006, 16: 435–454

    Article  MathSciNet  MATH  Google Scholar 

  26. Ollagnier J M. Ergodic Theory and Statistical Mechanics. Lecture Notes in Math, Vol 1115. Berlin: Springer, 1985

    Book  MATH  Google Scholar 

  27. Ollagnier JM, Pinchon D. The variational principle. Studia Math, 1982, 72(2): 151–159

    Article  MathSciNet  MATH  Google Scholar 

  28. Pein Y, Pitskel’ B S. Topological pressure and the variational principle for noncompact sets. Funct Anal Appl, 1984, 18: 307–318

    Article  MathSciNet  MATH  Google Scholar 

  29. Pesin Ya B. Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics. Chicago: Univ of Chicago Press, 1997

    Book  MATH  Google Scholar 

  30. Ruelle D. Repellers for real analytic maps. Ergodic Theory Dynam Systems, 1982, 2: 99–107

    Article  MathSciNet  MATH  Google Scholar 

  31. Stepin A M, Tagi-Zade A T. Variational characterization of topological pressure of the amenable groups of transformations. Dokl Akad Nauk SSSR, 1980, 254(3): 545–549 (in Russian); Sov Math Dokl, 1980, 22(2): 405–409

    MathSciNet  MATH  Google Scholar 

  32. Tang X, Cheng W, Zhao Y. Variational principle for topological pressures on subsets. J Math Anal Appl, 2015, 424: 1272–1285

    Article  MathSciNet  MATH  Google Scholar 

  33. Tempelman A A. Specific characteristics and variational principle for homogeneous random fields. Z Wahrscheinlichkeit-stheor Verw Geb, 1984, 65(3): 341–365

    Article  MathSciNet  MATH  Google Scholar 

  34. Tempelman A A. Ergodic Theorems for Group Actions: Informational and Thermo-dynamical Aspects. Math Appl, Vol 78. Dordrecht: Kluwer Academic, 1992

    Book  Google Scholar 

  35. Walters P. An Introduction to Ergodic Theory. New York: Springer-Verlag, 1982

    Book  MATH  Google Scholar 

  36. Wang C, Chen E. Projection pressure and Bowen’s equation for a class of self-similar fractals with overlap structure. Sci China Math, 2012, 55(7): 1387–1394

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang C, Chen E. The projection pressure for asymptotically weak separated condition and Bowen’s equation. Discrete Dyn Nat Soc, 2012, Art ID 807405 (10pp)

    MATH  Google Scholar 

  38. Yan K. Sub-additive and asymptotically sub-additive topological pressure for Z d-actions. J Dynam Differential Equations, 2013, 25(3): 653–678

    Article  MathSciNet  MATH  Google Scholar 

  39. Yan K. Conditional entropy and fiber entropy for amenable group actions. J Differential Equations, 2015, 259(7): 3004–3031

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang G. Variational principles of pressure. Discrete Contin Dyn Syst, 2009, 24: 1409–1435

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang G. Local variational principle concerning entropy of sofic group action. J Funct Anal, 2012, 262(4): 1954–1985

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang Y. Dynamical upper bounds for Hausdorff dimension of invariant sets. Ergodic Theory Dynam Systems, 1997, 17(3): 739–756

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhao Y, Cheng W. Variational principle for conditional pressure with subadditive potential. Open Syst Inf Dyn, 2011, 18(4): 389–404

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao Y, Cheng W. Coset pressure with sub-additive potentials. Stoch Dyn, 2014, 14(1): 1350012 (15pp)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhao Y, Zhang L, Cao Y. The asymptotically additive topological pressure on the irregular set for asymptotically additive potentials. Nonlinear Anal, 2011, 74: 5015–5022

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their careful reading and valuable comments. Part of this work was done when the second author visited ICERM, the financial support are greatly appreciated. This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 11790274, 11871361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhao, Y. Variational principle and zero temperature limits of asymptotically (sub)-additive projection pressure. Front. Math. China 13, 1099–1120 (2018). https://doi.org/10.1007/s11464-018-0720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-018-0720-1

Keywords

MSC

Navigation