Frontiers of Mathematics in China

, Volume 13, Issue 2, pp 449–457 | Cite as

Sharp weak bounds for n-dimensional fractional Hardy operators

  • Haixia Yu
  • Junfeng Li
Research Article


We obtain the operator norms of the n-dimensional fractional Hardy operator H α (0 < α < n) from weighted Lebesgue spaces \(L_{\left| x \right|^\rho }^p (\mathbb{R}^n )\) to weighted weak Lebesgue spaces \(L_{\left| x \right|^\beta }^{q,\infty } (\mathbb{R}^n )\).


Sharp weak bound fractional Hardy operator Lebesgue space with power weight 


42B20 42B35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by the NSFC-DFG (Grant No. 11761131002).


  1. 1.
    Bliss G A. An integral inequality. J Lond Math Soc, 1930, 5: 40–46CrossRefzbMATHGoogle Scholar
  2. 2.
    Boyd D W. Inequalities for positive integral operators. Pacific J Math, 1971, 38: 9–24MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen J, Fan D, Lin X, Ruan J. The fractional Hausdorff operators on the Hardy spaces H p(ℝn). Anal Math, 2016, 42(1): 1–17MathSciNetCrossRefGoogle Scholar
  4. 4.
    Christ M, Grafakos L. Best constants for two nonconvolution inequalities. Proc Amer Math Soc, 1995, 123(6): 1687–1693MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Faris W G. Weak Lebesgue spaces and quantum mechanical binding. Duke Math J, 1976, 43(2): 365–373MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fu Z, Grafakos L, Lu S, Zhao F. Sharp bounds for m-linear Hardy and Hilbert operators. Houston J Math, 2012, 38(1): 225–244MathSciNetzbMATHGoogle Scholar
  7. 7.
    Fu Z, Liu Z, Lu S, Wang H. Characterization for commutators of n-dimensional fractional Hardy operators. Sci China Ser A, 2007, 50(10): 1418–1426MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gao G, Hu X, Zhang C. Sharp weak estimates for Hardy-type operators. Ann Funct Anal, 2016, 7(3): 421–433MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gao G, Zhao F. Sharp weak bounds for Hausdorff operators. Anal Math, 2015, 41(3): 163–173MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hardy G H. Note on a theorem of Hilbert. Math Z, 1920, 6(3–4): 314–317MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lu S. Some recent progress of n-dimensional Hardy operators. Adv Math (China), 2013, 42(6): 737–747MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lu S, Yan D, Zhao F. Sharp bounds for Hardy type operators on higher-dimensional product spaces. J Inequal Appl, 2013, 2013(148): 11ppMathSciNetzbMATHGoogle Scholar
  13. 13.
    Mizuta Y, Nekvinda A, Shimomura T. Optimal estimates for the fractional Hardy operator. Studia Math, 2015, 227(1): 1–19MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yu H, Long S. Endpoint estimates for n-dimensional fractional Hardy operators and its dual form. Journal of Xiangtan University (Natural Sciences). 2015, 37(2): 10–15Google Scholar
  15. 15.
    Zhao F, Fu Z, Lu S. Endpoint estimates for n-dimensional Hardy operators and their commutators. Sci China Math, 2012 55(10): 1977–1990MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhao F, Lu S. The best bound for n-dimensional fractional Hardy operators. Math Inequal Appl, 2015 18(1): 233–240MathSciNetzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Mathematics and Complex Systems (Beijing Normal University), Ministry of Education; School of Mathematical SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations