Frontiers of Mathematics in China

, Volume 13, Issue 2, pp 301–312 | Cite as

Largest H-eigenvalue of uniform s-hypertrees

  • Yuan Hou
  • An Chang
  • Lei Zhang
Research Article


The k-uniform s-hypertree G = (V,E) is an s-hypergraph, where 1 ≤ sk - 1; and there exists a host tree T with vertex set V such that each edge of G induces a connected subtree of T. In this paper, some properties of uniform s-hypertrees are establised, as well as the upper and lower bounds on the largest H-eigenvalue of the adjacency tensor of k-uniform s-hypertrees in terms of the maximal degree Δ. Moreover, we also show that the gap between the maximum and the minimum values of the largest H-eigenvalue of k-uniform s-hypertrees is just Θ(Δ s/k ).


Largest H-eigenvalue spectral radius adjacency tensor hypertree 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant No. 11471077).


  1. 1.
    Berge C. Hypergraph: Combinatorics of Finite Sets. Amsterdam: North-Holland, 1989zbMATHGoogle Scholar
  2. 2.
    Bretto A. Hypergraph Theory: An Introduction. Berlin: Springer, 2013CrossRefzbMATHGoogle Scholar
  3. 3.
    Brandstädt A, Dragan F, Chepoi V, Voloshin V. Dually chordal graphs. SIAM J Discrete Math, 1998, 11: 437–455MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chang K, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507–520MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chang K, Qi L, Zhang T. A survey on the spectral theory of nonnegative tensors. Numer Linear Algebra Appl, 2013, 20: 891–912MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268–3292MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Friedland S, Gaubert A, Han L. Perron-Frobenius theorems for nonnegative multilinear forms and extensions. Linear Algebra Appl, 2013, 438: 738–749MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hardy G, Littlewood J, Pólya G. Inequalities. 2nd ed. Cambridge: Cambridge Univ Press, 1988zbMATHGoogle Scholar
  9. 9.
    Khan M, Fan Y. On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs. Linear Algebra Appl, 2015, 480: 93–106MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Li H, Shao J, Qi L. The extremal spectral radius of k-uniform supertrees. J Comb Optim, 2016, 32: 741–764MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lim L. Singular values and eigenvalues of tensors: a variational approach. In: Proc of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 05). 2005, 129–132Google Scholar
  12. 12.
    Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Qi L, Shao J, Wang Q. Regular uniform hypergraphs, s-cycles, s-paths and their largest Laplacian H-eigenvalues. Linear Algebra Appl, 2014, 443: 215–227MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Stevanović D. Bounding the largest eigenvalue of trees in terms of the largest vertex degree. Linear Algebra Appl, 2003, 360: 35–42MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yang Y, Yang Q. Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517–2530MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Center for Discrete Mathematics and Theoretical Computer ScienceFuzhou UniversityFuzhouChina
  2. 2.Department of Computer EngineeringFuzhou University Zhicheng CollegeFuzhouChina

Personalised recommendations