Abstract
We prove uniform positivity of the Lyapunov exponent for quasiperiodic Schrödinger cocycles with C 2 cos-type potentials, large coupling constants, and fixed weak Liouville frequencies.
Similar content being viewed by others
References
Avial A, Damanik D. Generic singular spectrum for ergodic Schrödinger operators. Duke Math J, 2005, 130: 393–400
Benedicks M, Carleson L. The dynamics of the Héenon map. Ann of Math, 1991, 133: 73–169
Bjerklöv K. The dynamics of a class of quasi-periodic Schrödinger cocycles. Ann Henri Poincarée, 2015, 16(4): 961–1031
Bourgain J. Positivity and continuity of the Lyapunov exponent for shifts on Td with arbitrary frequency vector and real analytic potential. J Anal Math, 2005, 96: 313–355
Bourgain J, Goldstein M. On nonperturbative localization with quasi-periodic potential. Ann of Math, 2000, 152: 835–879
Chan J. Method of variations of potential of quasi-periodic Schrödinger equations. Geom Funct Anal, 2008, 17: 1416–1478
Eliasson L H. Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math, 1997, 179(2): 153–196
Fröhlich J, Spencer T, Wittwer P. Localization for a class of one-dimensional quasiperiodic Schrödinger operators. Comm Math Phys, 1990, 132: 5–25
Goldstein M, Schlag W. Hölder continuity of the integrated density of states for quasiperiodic Schrödinger equations and averages of shifts of subharmonic functions. Ann of Math, 2001, 154: 155–203
Herman M. Une méethode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théeorème d'Arnold et de Moser sur le tore de dimension 2. Comment Math Helv, 1983, 58: 453–502
Jitomirskaya S, Kachkovskiy I. All couplings localization for quasiperiodic operators with Lipchitz monotone potentials. Preprint, 2015
Klein S. Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function. J Funct Anal, 2005, 218: 255–292
Sinai Ya G. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J Stat Phys, 1987, 46: 861–909
Wang Y, You J. Examples of dicontinuity of Lyapunov exponent in smooth quasiperiodic cocycles. Duke Math J, 2013, 162: 2363–2412
Wang Y, Zhang Z. Uniform positivity and continuity of Lyapunov exponents for a class of C 2 quasi-periodic Schrödinger cocycles. J Funct Anal, 2015, 268: 2525–2585
Young L S. Lyapunov exponents for some quasi-periodic cocycles. Ergodic Theory Dynam Systems, 1997, 17(2): 483–504
Zhang Z. Positive Lyapunov exponents for quasiperiodic Szegö cocycles. Nonlinearity, 2012, 25: 1771–1797
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Liang, J., Kung, PJ. Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies. Front. Math. China 12, 607–639 (2017). https://doi.org/10.1007/s11464-017-0619-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11464-017-0619-2