Skip to main content
Log in

Frequentist model averaging for linear mixed-effects models

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Linear mixed-effects models are a powerful tool for the analysis of longitudinal data. The aim of this paper is to study model averaging for linear mixed-effects models. The asymptotic distribution of the frequentist model average estimator is derived, and a confidence interval procedure with an actual coverage probability that tends to the nominal level in large samples is developed. The two confidence intervals based on the model averaging and based on the full model are shown to be asymptotically equivalent. A simulation study shows good finite sample performance of the model average estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckland S T, Burnham K P, Augustin N H. Model selection: An integral part of inference. Biometrics, 1997, 53: 603–618

    Article  MATH  Google Scholar 

  2. Claeskens G, Hjort N L. Model Selection and Model Averaging. New York: Cambridge University Press, 2008

    Book  MATH  Google Scholar 

  3. Danilov D, Magnus J R. On the harm that ignoring pretesting can cause. J Econometrics, 2004, 122: 27–46

    Article  MathSciNet  Google Scholar 

  4. Di C, Crainiceanu C, Caffo B, Punjabi N. Multilevel functional principal component analysis. Ann Appl Stat, 2008, 3: 458–488

    Article  MathSciNet  Google Scholar 

  5. Dimova R B, Markatou M, Talal A H. Information methods for model selection in linear mixed effects models with application to HCV data. Comput Statist Data Anal, 2011, 55: 2677–2697

    Article  MathSciNet  Google Scholar 

  6. Draper D. Assessment and propagation of model uncertainty. J Roy Statist Soc Ser B, 1995, 57: 45–97

    MathSciNet  MATH  Google Scholar 

  7. Goldenshluger A. A universal procedure for aggregating estimators. Ann Statist, 2009, 37: 542–568

    Article  MathSciNet  MATH  Google Scholar 

  8. Greven S, Kneib T. On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika, 2010, 97: 773–789

    Article  MathSciNet  MATH  Google Scholar 

  9. Hansen B E. Least squares model averaging. Econometrica, 2007, 75: 1175–1189

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen B E. Least squares forecast averaging. J Econometrics, 2008, 146: 342–350

    Article  MathSciNet  Google Scholar 

  11. Hansen B E. Averaging estimators for autoregressions with a near unit root. J Econometrics, 2010, 158: 142–155

    Article  MathSciNet  Google Scholar 

  12. Hansen B E, Racine J. Jackknife model averaging estimators. J Econometrics, 2012, 167: 38–46

    Article  MathSciNet  Google Scholar 

  13. Hjort N L, Claeskens G. Frequentist model average estimators. J Amer Statist Assoc, 2003, 98: 879–899

    Article  MathSciNet  MATH  Google Scholar 

  14. Hjort N L, Claeskens G. Focussed information criteria and model averaging for Cox’s hazard regression model. J Amer Statist Assoc, 2006, 101: 1449–1464

    Article  MathSciNet  MATH  Google Scholar 

  15. Hodges J S. Some algebra and geometry for hierarchical models, applied to diagnostics (with Discussion). J Roy Statist Soc Ser B, 1998, 60: 497–536

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoeting J A, Madigan D, Raftery A E, Volinsky C T. Bayesian model averaging: A tutorial. Statist Sci, 1999, 14: 382–417

    Article  MathSciNet  MATH  Google Scholar 

  17. Hodegs J S, Sargent D J. Counting degrees of freedom in hierarchical and other parameterized models. Biometrika, 2001, 88: 367–379

    Article  MathSciNet  Google Scholar 

  18. Kabaila P, Leeb H. On the large-sample minimal coverage probability of confidence intervals after model selection. J Amer Statist Assoc, 2006, 101: 619–629

    Article  MathSciNet  MATH  Google Scholar 

  19. Laird N M, Ware J H. Random-effects models for longitudinal data. Biometrics, 1982, 38: 963–974

    Article  MATH  Google Scholar 

  20. Lee Y, Nelder J A. Hierarchical generalized linear models: A synthesis of generalised linear models, random effect models and structured dispersions. Biometrika, 2001, 88: 987–1006

    Article  MathSciNet  MATH  Google Scholar 

  21. Li Y, Baron J. Behavioral Research Data Analysis with R. New York: Springer, 2012

    Book  MATH  Google Scholar 

  22. Liang H, Wu H, Zou G. A note on conditional AIC for linear mixed-effects models. Biometrika, 2008, 95: 773–778

    Article  MathSciNet  MATH  Google Scholar 

  23. Liang H, Zhang X, Liu A, Ruppert D, Zou G. Selection strategy for covariance structure of random effects in linear mixed-effects models. University of Rochester, Mimeo, 2011

    Google Scholar 

  24. Liang H, Zou G, Wan A T K, Zhang X. Optimal weight choice for frequentist model average estimators. J Amer Statist Assoc, 2011, 106: 1053–1066

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu S, Yang Y. Combining models in longitudinal data analysis. Ann Inst Statist Math, 2012, 64: 233–254

    Article  MathSciNet  MATH  Google Scholar 

  26. Ngo L, Brand R. Model selection in linear mixed effects models using SAS Proc Mixed. SAS Global Forum 22, 2002

  27. Pinheiro J C, Bates D M. Mixed Effects Models in S and S-plus. New York: Springer, 2000

    Book  MATH  Google Scholar 

  28. Raftery A, Madigan D, Hoeting J. Bayesian model averaging for linear regression models. J Amer Statist Assoc, 1997, 92: 179–191

    Article  MathSciNet  MATH  Google Scholar 

  29. Rao J N K. Small Area Estimation. New York: John Wiley, 2003

    Book  MATH  Google Scholar 

  30. Schomaker M, Wan A T K, Heumann C. Frequentist model averaging with missing observations. Comput Statist Data Anal, 2010, 54: 3336–3347

    Article  MathSciNet  Google Scholar 

  31. Staiger D, Stock J H. Instrumental variables regression with weak instruments. Econometrica, 1997, 65: 557–586

    Article  MathSciNet  MATH  Google Scholar 

  32. Tarpey T, Petkova E, Lu Y, Govindarajulu U. Optimal partitioning for linear mixed effects models: Applications to identifying placebo responders. J Amer Statist Assoc, 2010, 105: 968–977

    Article  MathSciNet  Google Scholar 

  33. Vaida F, Blanchard S. Conditional Akaike information for mixed-effects models. Biometrika, 2005, 92: 351–370

    Article  MathSciNet  MATH  Google Scholar 

  34. Wan A T K, Zhang X, Zou G. Least squares model averaging by Mallows criterion. J Econometrics, 2010, 156: 277–283

    Article  MathSciNet  Google Scholar 

  35. Wang H, Zhang X, Zou G. Frequentist model averaging estimation: A review. J Syst Sci Complex, 2009, 22: 732–748

    Article  MathSciNet  Google Scholar 

  36. Wang H, Zou G. Frequentist model average estimation for linear errors-in-variables models. J Syst Sci Math Sci, 2012, 32: 1–14

    MathSciNet  Google Scholar 

  37. Yang Y. Adaptive regression by mixing. J Amer Statist Assoc, 2001, 96: 574–586

    Article  MathSciNet  MATH  Google Scholar 

  38. Yuan Z, Yang Y. Combining linear regression models: When and how? J Amer Statist Assoc, 2005, 100: 1202–1214

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang X, Liang H. Focused information criterion and model averaging for generalized additive partial linear models. Ann Statist, 2011, 39: 174–200

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang X, Wan A T K, Zhou Z. Focused information criteria, model selection and model averaging in a Tobit model with a non-zero threshold. J Bus Econom Statist, 2012, 30: 132–142

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Zou, G. & Zhang, X. Frequentist model averaging for linear mixed-effects models. Front. Math. China 8, 497–515 (2013). https://doi.org/10.1007/s11464-012-0254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-012-0254-x

Keywords

MSC

Navigation