Frontiers of Mathematics in China

, Volume 7, Issue 2, pp 347–363 | Cite as

A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations

Research Article

Abstract

This paper is concerned with the fast iterative solution of linear systems arising from finite difference discretizations in electromagnetics. The sweeping preconditioner with moving perfectly matched layers previously developed for the Helmholtz equation is adapted for the popular Yee grid scheme for wave propagation in inhomogeneous, anisotropic media. Preliminary numerical results are presented for typical examples.

Keywords

Electromagnetic scattering Yee grid finite difference methods perfectly matched layers LDLT factorizations multifrontal method wave propagation in inhomogeneous and anisotropic media matrix preconditioners 

MSC

65F08 65N22 65N80 35Q61 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Champagne N J, Berryman J G, Buettner H M. FDFD: A 3D Finite-difference frequency-domain code for electromagnetic induction tomography. J Comput Phys, 2001, 170(2): 830–848MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Chew W C, Jin J, Michielssen E, Song J. Fast and Efficient Algorithms in Computational Electromagnetics. London: Artech House, 2001Google Scholar
  3. 3.
    Chew W C, Weedon W H. A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microwave Opt Tech Lett, 1994, 7(13): 599–604CrossRefGoogle Scholar
  4. 4.
    Engquist B, Majda A. Absorbing boundary conditions for the numerical simulation of waves. Math Comp, 1977, 31: 629–651MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Engquist B, Ying L. Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Comm Pure Appl Math, 2011, 64: 697–735MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Engquist B, Ying L. Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model Simul, 2011, 9: 686–710MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Jin J. The Finite Element Method in Electromagnetics. Hoboken: Wiley-IEEE Press, 2002MATHGoogle Scholar
  8. 8.
    Lin L, Lu J, Ying L, Car R, E W. Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Commun Math Sci (to appear)Google Scholar
  9. 9.
    Mur G. Absorbing boundary conditions for the finite-difference approximation of timedomain electromagnetic field equations. IEEE Trans Electromag Compat, 1981, 23: 377–382CrossRefGoogle Scholar
  10. 10.
    Taflove A, Hagness S. Computational Electrodynamics: the Finite-difference Timedomain Method. London: Artech House, 2005Google Scholar
  11. 11.
    Werner G R, Cary J R. A stable FDTD algorithm for non-diagonal, anisotropic dielectrics. J Comput Phys, 2007, 226(1): 1085–1101MATHCrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ICESUniversity of Texas at AustinAustinUSA
  2. 2.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations