Skip to main content
Log in

Partial expansion of a Lipschitz domain and some applications

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We show that a Lipschitz domain can be expanded solely near a part of its boundary, assuming that the part is enclosed by a piecewise C 1 curve. The expanded domain as well as the extended part are both Lipschitz. We apply this result to prove a regular decomposition of standard vector Sobolev spaces with vanishing traces only on part of the boundary. Another application in the construction of low-regularity projectors into finite element spaces with partial boundary conditions is also indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche C, Bernardi C, Dauge M, Girault V. Vector potentials in three-dimensional non-smooth domains. Math Methods Appl Sci, 1998, 21: 823–864

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold D N, Falk R S, Winther R. Preconditioning in H(div) and applications. Math Comp, 1997, 66: 957–984

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold D N, Falk R S, Winther R. Finite element exterior calculus: from Hodge theory to numerical stability. Bull Amer Math Soc (NS), 2010, 47: 281–353

    Article  MathSciNet  MATH  Google Scholar 

  4. Birman M, Solomyak M. Construction in a piecewise smooth domain of a function of the class H 2 from the value of the conormal derivative. J Math Sov, 1990, 49: 1128–1136

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonnet-Ben Dhia A -S, Hazard C, Lohrengel S. A singular field method for the solution of Maxwell's equations in polyhedral domains. SIAM J Appl Math, 1999, 59: 2028–2044 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bramble J H. A proof of the inf-sup condition for the Stokes equations on Lipschitz domains. Math Models Methods Appl Sci, 2003, 13: 361–371

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, No 15. New York: Springer-Verlag, 1991

    Book  MATH  Google Scholar 

  8. Buffa A, Costabel M, Sheen D. On traces for H(curl, Ω) in Lipschitz domains. J Math Anal Appl, 2002, 276: 845–867

    Article  MathSciNet  MATH  Google Scholar 

  9. Christiansen S H, Winther R. Smoothed projections in finite element exterior calculus. Math Comp, 2008, 77: 813–829

    Article  MathSciNet  MATH  Google Scholar 

  10. Clément Ph. Approximation by finite element functions using local regularization. RAIRO, Analyse Numérique, 1975, R-2(9e année): 77–84

    Google Scholar 

  11. Demkowicz L, Gopalakrishnan J, Schöberl J. Polynomial extension operators. Part II. SIAM J Numer Anal, 2009, 47: 3293–3324

    Article  MathSciNet  MATH  Google Scholar 

  12. Demkowicz L, Gopalakrishnan J, Schöberl J. Polynomial extension operators. Part III. Math Comp, 2011, DOI: 10.1090/S0025-5718-2011-02536-6

  13. Falk R S. Finite element methods for linear elasticity. In: Mixed Finite Elements, Compatibility Conditions, and Applications. Lectures given at the C.I.M.E. Summer School Held in Cetraro, Italy, June 26–July 1, 2006. Lecture Notes in Mathematics, Vol 1939. Berlin: Springer-Verlag, 2008, 160–194

    Google Scholar 

  14. Girault V, Raviart P -A. Finite ElementMethods for Navier-Stokes Equations. Springer Series in Computational Mathematics, No 5. New York: Springer-Verlag, 1986

    Book  Google Scholar 

  15. Gopalakrishnan J, Oh M. Commuting smoothed projectors in weighted norms with an application to axisymmetric Maxwell equations. J Sci Comput, 2011, DOI: 10.1007/s10915-011-9513-3

  16. Gopalakrishnan J, Pasciak J E. Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations. Math Comp, 2003, 72: 1–15 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grisvard P. Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, No 24. Marshfield: Pitman Advanced Publishing Program, 1985

    MATH  Google Scholar 

  18. Hestenes M R. Extension of the range of a differentiable function. Duke Math J, 1941, 8: 183–192

    Article  MathSciNet  Google Scholar 

  19. Hiptmair R, Li J, Zhou J. Universal extension for Sobolev spaces of differential forms and applications. Tech Rep 2009-22, Eidgenössische Technische Hochschule, 2009

  20. Hiptmair R, Toselli A. Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions. In: Parallel solution of partial differential equations (Minneapolis, MN, 1997). IMA VolMath Appl, Vol 120. New York: Springer, 2000, 181–208

    Chapter  Google Scholar 

  21. Hofmann S, Mitrea M, Taylor M. Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains. J Geom Anal, 2007, 17: 593–647

    Article  MathSciNet  MATH  Google Scholar 

  22. Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach Science Publishers, 1963

    MATH  Google Scholar 

  23. McLean W. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  24. Nečas J. Les méthodes directes en théorie des équations elliptiques. Paris: Masson et Cie, Éditeurs, 1967

    MATH  Google Scholar 

  25. Pasciak J E, Zhao J. Overlapping Schwarz methods in H(curl) on polyhedral domains. J Numer Math, 2002, 10: 221–234

    Article  MathSciNet  MATH  Google Scholar 

  26. Schöberl J. Commuting quasi-interpolation operators for mixed finite elements. Tech Rep. ISC-01-10-MATH, Institute for Scientific Computation, Texas A&M University, College Station, 2001

  27. Schöberl J. A multilevel decomposition result in H(curl). In: Wesseling P, Oosterlee C, Hemker P, eds. Proceedings of the 8th European Multigrid Conference, EMG 2005, TU Delft. 2008

  28. Schöberl J. A posteriori error estimates for Maxwell equations. Math Comp, 2008, 77: 633–649

    Article  MathSciNet  MATH  Google Scholar 

  29. Scott L R, Vogelius M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél Math Anal Numér, 1985, 19: 111–143

    MathSciNet  MATH  Google Scholar 

  30. Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No 30. Princeton: Princeton University Press, 1970

    MATH  Google Scholar 

  31. Vassilevski P S, Wang J P. Multilevel iterative methods for mixed finite element discretizations of elliptic problems. Numer Math, 1992, 63: 503–520

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalakrishnan, J., Qiu, W. Partial expansion of a Lipschitz domain and some applications. Front. Math. China 7, 249–272 (2012). https://doi.org/10.1007/s11464-012-0189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-012-0189-2

Keywords

MSC

Navigation