Skip to main content
Log in

Sum of squares methods for minimizing polynomial forms over spheres and hypersurfaces

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

This paper studies the problem of minimizing a homogeneous polynomial (form) f(x) over the unit sphere \(\mathbb{S}^{n - 1} = \left\{ {x \in \mathbb{R}^n :\left\| x \right\|_2 = 1} \right\}\). The problem is NP-hard when f(x) has degree 3 or higher. Denote by f min (resp. f max) the minimum (resp. maximum) value of f(x) on \(\mathbb{S}^{n - 1}\). First, when f(x) is an even form of degree 2d, we study the standard sum of squares (SOS) relaxation for finding a lower bound of the minimum f min:

$$\max \gamma s.t. f\left( x \right) - \gamma \cdot \left\| x \right\|_2^{2d} is SOS.$$

Let f sos be the above optimal value. Then we show that for all n ⩾ 2d,

$$1 \leqslant \frac{{f_{\max } - f_{sos} }} {{f_{\max } - f_{\min } }} \leqslant C(d)\sqrt {\left( {_{2d}^n } \right)} .$$

Here, the constant C(d) is independent of n. Second, when f(x) is a multi-form and \(\mathbb{S}^{n - 1}\) becomes a multi-unit sphere, we generalize the above SOS relaxation and prove a similar bound. Third, when f(x) is sparse, we prove an improved bound depending on its sparsity pattern; when f(x) is odd, we formulate the problem equivalently as minimizing a certain even form, and prove a similar bound. Last, for minimizing f(x) over a hypersurface H(g) = {x ∈ ℝn: g(x) = 1} defined by a positive definite form g(x), we generalize the above SOS relaxation and prove a similar bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blekherman G. There are significantly more nonnegative polynomials than sums of squares. Israel J Math, 2006, 153: 355–380

    Article  MathSciNet  MATH  Google Scholar 

  2. Faybusovich L. Global optimization of homogeneous polynomials on the simplex and on the sphere. In: Floudas C, Pardalos P, eds. Frontiers in Global Optimization. Nonconvex Optim Appl, Vol 74. Boston: Kluwer Academic Publishers, 2004, 109–121

    Google Scholar 

  3. Hurwitz A. Über den Vergleich des arithmetischen und des geometrischen. Mittels J Reine Angew Math, 1891, 108: 266–268

    MATH  Google Scholar 

  4. Kojima M, Kim S, Waki H. Sparsity in sums of squares of polynomials. Math Program, 2005, 103(1): 45–62

    Article  MathSciNet  MATH  Google Scholar 

  5. Lasserre J. Global optimization with polynomials and the problem of moments. SIAM J Optim, 2001, 11(3): 796–817

    Article  MathSciNet  MATH  Google Scholar 

  6. Ling C, Nie J, Qi L, Ye Y. Bi-quadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J Optim, 2009, 20(3): 1286–1310

    Article  MathSciNet  MATH  Google Scholar 

  7. Nesterov Y. Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Paper, CORE, Catholic University of Louvain, Louvainla-Neuve, Belgium, 2003

    Google Scholar 

  8. Nie J, Demmel J. Sparse SOS relaxations for minimizing functions that are summations of small polynomials. SIAM J Optim, 2008, 19(4): 1534–1558

    Article  MathSciNet  MATH  Google Scholar 

  9. Parrilo P. Semidefinite Programming relaxations for semialgebraic problems. Math Program, Ser B, 2003, 96(2): 293–320

    Article  MathSciNet  MATH  Google Scholar 

  10. Parrilo P. Exploiting structure in sum of squares programs. In: Proceedings for the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, 2003. 2004, 4664–4669

  11. Parrilo P, Sturmfels B. Minimizing polynomial functions. In: Basu S, Gonzalez-Vega L, eds. Proceedings of the DIMACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science (March 2001). Providence: Amer Math Soc, 2003, 83–100

    Google Scholar 

  12. Reznick B. Forms derived from the arithmetic-geometric inequality. Math Ann, 1989, 283: 431–464

    Article  MathSciNet  MATH  Google Scholar 

  13. Reznick B. Some concrete aspects of Hilbert’s 17th problem. In: Contem Math, Vol 253. Providence: Amer Math Soc, 2000, 251–272

    Google Scholar 

  14. Wolkowicz H, Saigal R, Vandenberghe L, eds. Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. International Series in Operations Research & Management Science, 27. Boston: Kluwer Academic Publishers, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawang Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, J. Sum of squares methods for minimizing polynomial forms over spheres and hypersurfaces. Front. Math. China 7, 321–346 (2012). https://doi.org/10.1007/s11464-012-0187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-012-0187-4

Keywords

MSC

Navigation